
Copyright 1999 by Lightner Engineering Page 1

PicoWeb “WebLED” Project
This PicoWeb project can be found in the Picoweb development system “samples” directory in a file named
samples\webled\webled.pwp. This project consists of a single HTML document or Web page
(webled.htm) which references three JPG images (bruce.jpg, dave.jpg and steve.jpg).This
project allows a PicoWeb server to display the “home page” shown in Figure 1.

A single user-supplied application-specific CGI routine, written in PicoWeb pcode, is also required to support
this simple PicoWeb project. This CGI routine is used to read the current temperature from an I2C digital
thermometer chip attached to the PicoWeb server’s 25-pin I/O expansion connector. (You can still build and
load this project’s firmware into a PicoWeb server without an attached digital thermometer. If the I2C chip is
missing, the PicoWeb’s firmware will always read -1 degrees Celsius from the missing chip.)

Figure 1- PicoWeb WebLED Project Web Page

Copyright 1999 by Lightner Engineering Page 2

Project File - The various parts of the WebLED project file (webled.pwp) will be described individually in the
following sections:

//---
//
// PicoWeb Project File for WebLED
//
//---
//
// application-specific preprocessor definitions
//
#define BANNER "\r\nPicoWeb WebLED\r\n"
#define EEPROM_IP /* use file "ip" for IP address */
#define ENABLE_WATCHDOG /* use Atmel wathcdog timer hardware */
#define DEBUGGER /* include debugger firmware */
#define SERIAL_BAUD_DIVISOR 25 /* serial port speed: 19200 baud @ 8 MHz */

#define DS1621_BASE_ADDR 0x9E /* ext. DS1621 digital thermometer */
#define I2C_PORT1_PRESENT /* enable I2C code for DS1621 */

The project file webled.pwp also contains several preprocessor #define statements, as follows:

• BANNER – specifies a text string that is printed each time the PicoWeb server is reset
• EEPROM_IP – specifies that the PicoWeb IP address is stored in on-chip EEPROM (the address will

come from the file ip.
• ENABLE_WATCHDOG – enables the watchdog timer hardware on reset
• DEBUGGER – includes the serial port debugger firmware
• SERIAL_BAUD_DIVISOR – sets the baud rate for the serial port (used by the debugger)
• DS1621_BASE_ADDR – defines the base address of external I2C digital thermometer chip.
• I2C_PORT1_PRESENT – enables firmware that accesses the external I2C digital thermometer chip

All but the last two defines are normally required as part of any PicoWeb project file.

//
// application-specific HTML and image file names
//
webled.htm // ii00 (default Web page)
bruce.jpg // ii01
dave.jpg // ii02
steve.jpg // ii03

This section of the project file lists the files which contain HTML code and images which will be stored in the
PicoWeb serial EEPROM memory as part of the Web server’s “file system”. The first file in the list must be
the default Web server “home page”. Everything after the //’s is comment text, and is ignored by the software
which processes the project file. The text of the form iihh after each file indicates the URL “file name” that
will be assigned to each file after it is placed in the PicoWeb server’s file system.

//
// application-specific CGI routines
//
temperature.cgi // iu00 (returns ASCII temperature reading (deg-f)

The above line indicates that a user-supplied CGI pcode routine named “temperature” needs to be loaded into
the PicoWeb server. Also, wherever the string `temperature.cgi` is found in any of the HTML source code
files loaded into the PicoWeb server file system as part of this project, a special tag will be inserted into those
files. This special tag will cause the pcode routine “temperature” to be called at that point in the HTML code
stream whenever a HTML file with that tag is retrieved.

Copyright 1999 by Lightner Engineering Page 3

#avr_reset
;--
; this code is executed each time microcontroller is reset
;--
;
 sbi ddrd,LED_BIT ; make LED driver pin an output

 ldi yl,0xEE ; start DS1621 temperature conversion
 rcall ds1621_write

The above AVR assembly language will be inserted into the PicoWeb firmware build such that that code is
executed each time the Atmel microcontroller is reset. The first line of code makes the microcontroller pin
which drives the single user-controlled LED on the PicoWeb server an output pin (i.e., pin PD4). The next two
assembly language instructions initialize the I2C digital thermometer chip.

#avr_slow
;--
; this code is executed each trip through "slow idle" loop (~1 sec period)
;--
;

#avr_fast
;--
; this code is executed each trip through "fast idle" loop
;--
;

The #avr_slow and #avr_fast code sections are empty. In fact, those directives could be removed from the
project file. These sections allow the user to insert code in the inner (fast) and outer (slower) idle loops in the
PicoWeb server firmware. The “fast idle loop” is where the PicoWeb server firmware polls the Ethernet
controller chip. The outer “slow idle loop” is executed about once per second, and is used to check on less
demanding tasks.

#avr_asm
;--
; application-specific CGI pcode and AVR assembly routines go here
;--
;

;--
;+
; **-temperature-show the temperature (deg-F) in decimal.
;-
;--
.eseg
temperature:
 pcall tempf_buf ; read temp in deg-F
 pcall decconv ; convert to decimal ascii
 pret

The #avr_asm project file directive specifies the beginning of user-supplied, application-specific routines
which do not need to be executed at reset time, nor every time through one of the “idle loops”. This is where
user-supplied CGI routines are placed.

Copyright 1999 by Lightner Engineering Page 4

The above pcode section is a PicoWeb pcode routine named temperature which, when called, will read the
current temperature from the digital thermometer chip and output that reading in ASCII text to the standard
output stream. If this routine is called because an HTML page is being retrieved which contains a special tag
pointing to this routine, the standard output stream will be pointed at the HTML code stream. Therefore the
latest ASCII temperature reading will be automatically inserted into the HTML code stream in place of this
routine’s tag. Note the .eseg directive which causes this code to reside in the PicoWeb server’s external serial
EEPROM memory.

;--
;+
; **-tempf_buf-read temp (deg-C) from DS1621 and convert to deg-F
;
; inputs:
; none
;
; outputs:
; buf = latest temperature reading in degrees Fahrenheit
;-
;--
.cseg
tempf_buf:
 pclrw buf
 pread_temp buf ; get temp
 pmovwi buf+4,0x80 ; set up for sign test
 pandwi buf+4,[buf] ; check the sign
 pjumpeq temp_positive ; it is positive
 pmovbi buf+1,0xff ; extend the sign
 pnegw buf ; negate
temp_positive:
 pmul buf,[buf],9 ; C*9
 pdiv buf,[buf],5 ; /5
 pandwi buf+4,0x80 ; test original sign
 pjumpeq temp_norenegate ; positive
 pnegw buf
temp_norenegate:
 paddwi buf,32 ; +32 - buf now has temp (F)
 pret

This PicoWeb pcode routine reads the current temperature from the digital thermometer chip then converts that
reading from degrees Celsius to degrees Fahrenheit. Temperature is read from the chip as a single signed 8-bit
value in degrees Celsius. After multiplying that reading by 9, dividing by 5, and adding 32, the resultant 16-bit
value is passed back to the caller in the SRAM location buf. Note the .cseg directive which causes this routine
(and those which follows it) to reside in the PicoWeb server’s internal program memory.

;--
;+
; **-decconv-decimal converter.
;
; inputs:
; buf = word to convert
;
; outputs:
; result printed (with pputc)
;-
;--
#define DIG_BUF buf+6
#define DIG_PTR buf+4
#define DEC_REM buf+2
#define DEC_VAL buf

.cseg

Copyright 1999 by Lightner Engineering Page 5

decconv:
 pmovwi DIG_PTR,DIG_BUF ; get input word
 pbitwi DEC_VAL,0x8000 ; check the sign
 pjumpeq decconv1 ; positive - start conversion
 pnegw DEC_VAL ; negate it
 pputc '-'
decconv1:
 pdiv DEC_VAL,[DEC_VAL],10 ; get next one
 paddwi DEC_REM,'0' ; convert digit for display
 pmovbi [DIG_PTR],[byte DEC_REM] ; save digit
 paddwi DIG_PTR,1 ; bump past digit just stored
 psubwi DEC_VAL,0 ; test remaining value
 pjumpne decconv1 ; if more to convert
decconv2:
 psubwi DIG_PTR,1 ; point to next one
 pputcb [byte DIG_PTR] ; show it
 pcmpwi DIG_PTR,DIG_BUF ; check if just did last one
 pjumpne decconv2 ; nope - do next one
 pret

The above PicoWeb pcode routine takes a signed 16-bit value passed in SRAM location buf, converts that
number into ASCII text, and output the text to the standard output stream.

.cseg
#include "muldiv.asm"

These are the last two lines in the project file. These lines causes firmware which implements integer multiply
and divide, stored in the source code library file muldiv.asm, to be loaded into the program memory (.cseg)
of the Atmel microcontroller as part of the project build process.

PicoWeb HTML Coding - Listing 1 shows the contents of the project’s “Home Page” (webled.htm). To
those familiar with HTML, this file looks very much like an ordinary HTML document except for some strange
syntax relating to tokens “tagged” with back-ticks (`). For example, the first line contains `t, not something
one normally finds in an HTML document. This PicoWeb tag causes an HTTP text header of the form:

HTTP/1.0 200
Content-type: text/html

to be output when this document is retrieved from the PicoWeb server. Those familiar with low-level CGI
programming will recognize the significance of this. This HTTP header tells a Web browser exactly what kind

of document is being returned from the Web server in response to an HTTP GET request.

`t<html>
<head><title>WebLED</title></head>
<body text=#000000 bgcolor=#c0c0c0>
<center>
<h2>Frey 'n Hell Light WebLED v$$VERSION$$</h2>
<FORM name=mfrm method=GET action="/x">
<input type=radio NAME=4 VALUE=0 `?04 CHECKED{}>on

<input type=radio NAME=4 VALUE=1 `?04{CHECKED}>off

<input type=submit VALUE="Set LED">
</FORM>
©1998-1999 Freyder, Helland & Lightner

The current temperature reading is `temperature.cgi`°F
</center>

Listing 1 – PicoWeb “Home Page” (hello.htm)

Copyright 1999 by Lightner Engineering Page 6

The special tag `temperature.cgi` was discussed previously. It tells the PicoWeb server to call the user-
supplied pcode routine “temperature“ at that point in the HTML code stream where that tag is located.

The following lines in Listing 1:

<input type=radio NAME=4 VALUE=0 `?04 CHECKED{}>on

<input type=radio NAME=4 VALUE=1 `?04{CHECKED}>off

need to be explained. A tag of the form:

`?hh text0 { text1 }

indicates the following actions should be preformed when that tag is encountered as part of the HTML code
output stream:

• If port D output bit hh is low, output the text up to the next {, then discard the text up to the next }.
The {}’s are discarded.

• If port D output bit hh is high, discard the text up to the next {, then output the text up to the next }.
The {}’s are discarded.

In other words, if bit hh is low, output the first text0 string, else output the second text1 string. In the example
of Listing 1, the text “CHECKED” is output on either the first or second “radio button” HTML code line,
depending upon the state of PicoWeb output bit PD4, the output pin which drives the user-controlled LED.

The HTML form shown in Listing 1:

<FORM name=mfrm method=GET action="/x">
<input type=radio NAME=4 VALUE=0 `?04 CHECKED{}>on

<input type=radio NAME=4 VALUE=1 `?04{CHECKED}>off

<input type=submit VALUE="Set LED">
</FORM>

allows the user of the “WebTemp” PicoWeb Web page to change the state of the user-controlled LED by
clicking on the Web page button labeled “Set LED”. When this button is clicked, the Web browser will submit
an HTTP GET request to the PicoWeb server with the following URL:

http://x.y.z.w/x?4=s

where x.y.z.w is the IP address of the PicoWeb server and s is the desired state of the LED, either 0 or 1. (The
“radio buttons” in the form, depending upon which one is “checked”, cause a value named “4” to be sent to the
PicoWeb server.) Firmware in the PicoWeb server recognizes HTTP GET requests of the form “x?p=s”, where
p is a digit in the range of 0-7, and will set the state of output pin DBp to s.

Also note that any text strings “$$VERSION$$” will be replaced with the current PicoWeb firmware version
string when HTML files are processed for downloading into the PicoWeb server’s “file system”.

Building the Project - The WebLED project can be built using the PicoWeb development system as in the
following examples. The examples that follow assume that commands are being entered into an MS-DOS
Prompt Window under Windows 95/98. Note that the environment variable PWDEV needs to be set to the full
path name of the PicoWeb development system “base directory”, and the PicoWeb development system’s “bin”
subdirectory needs to be in the PATH. Assuming that the PicoWeb development system “base directory” is
C:\PWDEV, then the following commands will set up the environment for PicoWeb development:

C:>set PWDEV=C:\PWDEV
C:>set PATH=%PATH%;%PWDEV%\bin

Copyright 1999 by Lightner Engineering Page 7

Before beginning building the WebLED project two text files may need to be edited:

ip – must contain the IP address assigned to the PicoWeb server (e.g., 10.1.2.3)
ether – must contain the Ethernet address assigned to the PicoWeb server (e.g., 0.1.2.3.4.5)

After assigning IP and Ethernet address, the WebLED project can be compiled and readied for download into
the PicoWeb server. This can be accomplished with the following command:

C:>pwbuild webled

This will cause the generation of a number of files, including an assembly language listing file, webled.lst,
as well as four data files needed to download the firmware and Web pages into the PicoWeb server hardware:

webled.rom – Atmel micocontroller program memory binary data (a.k.a., ROM file)
webled.ep – Atmel microcontroller on-chip EEPROM program binary data
webled.el – PicoWeb CGI pcode binary data, to be loaded into the external serial EEPROM
webled.dat – PicoWeb “Web file system” data (i.e., HTML code and images)

Downloading the Project - The first two files can be loaded into the PicoWeb server hardware using a PC
parallel port by attaching the PicoWeb programming cable to the connector on the PicoWeb server and to the
PC’s parallel port, then entering the following command:

C:>pwavrld webled

This will erase the program and EEPOM memory in the PicoWeb server’s Atmel microcontroller, then
download new firmware and data into the chip.

At this point, if the PicoWeb server is plugged into the network, it should now be active on the Ethernet. In
fact, one should be able to “ping” the PicoWeb server from the development system PC using the PicoWeb
server’s assigned IP address.

At this point, the Web pages and CGI pcode routines store in the files webled.dat and webled.el need to
be loaded into the PicoWeb server. This can be done with the following command:

C:>pwnetld webled

which will download the data in these files over the network using the PC’s network card. Assuming all goes
well, the PicoWeb server can now be accessed over the network as a Web server. One should be able to
retrieve the Web page shown in Figure 1 by using the following URL:

http://x.y.z.w/

where x.y.z.w is the IP address previously assigned to the PicoWeb server.

