
Copyright  1999 by Lightner Engineering Page 1

Converting PicoWeb Projects to the
New Development System

Version 2.00

July 22, 2000

Lightner Engineering
 8551 La Jolla Shores Drive

 La Jolla, California 92037-3044
Phone: +1-858-551-4011 FAX: +1-858-551-0777

 Email: support@lightner.net
 URL: http://www.picoweb.net/

Copyright  1999 by Lightner Engineering Page 2

Table of Contents
Introduction... 3
Changes for GNU Assembler... 3

GNU Assembler Documentation .. 3
Automatic Preprocessing.. 4
Global Labels... 4
Program Memory Addressed as Bytes... 4
Pcode Declarations... 4
Memory Management .. 5
Interrupt Vector Table .. 6
Complex Relocatable Expressions .. 6

Changes to PicoWeb Project File ... 7
New Project File #defines... 8
Effect of Project File #defines .. 8
Web Page Content Type ... 8
True File Names in URLs... 9
Listing of CGI Routines Optional ... 9
Linker Directives.. 10
Variable putcok Not Needed ... 10

Changes to PicoWeb HTML Files.. 10
Tag `t Obsolete .. 10
Changes to PicoWeb Tags .. 11
No Automatic Processing of URL Parameters... 11
True File Names in URLs... 11
Bad URL No Longer Returns Home Page... 12

Latent Pcode Bugs... 12
New Pcode Instructions ... 12

Processing URL FORM Parameters.. 12
Pcode Stack Frames ... 13

C Routines .. 13

Copyright  1999 by Lightner Engineering Page 3

Introduction
This document describes the steps needed to convert an older PicoWeb project designed to use Atmel’s AVR
assembler to use the new PicoWeb development system which uses the GNU assembler and linker. The new
v2.00 GNU-based PicoWeb development system was released on July 6, 2000.

Every attempt was made to maintain upward compatibility with the older PicoWeb development system
software and firmware. However, because of certain basic syntax differences between the Atmel’s MS-DOS
assembler (i.e., AVRASM.EXE) and the GNU assembler, changes to a user’s assembly language code may be
required in order to use the new development tools. Also, because the new PicoWeb development system
makes use of separately assembled object modules, and because a given PicoWeb project file is not longer a
single assembly language source file, changes to project file #defines and directives may be required. Changes
to PicoWeb tags and/or URL references in PicoWeb HTML files may also be required. Certain PicoWeb tags
have been made obsolete as part of the switch to the new development system. Finally, changes to URLs which
reference PicoWeb Web pages may be needed because of the fact that new PicoWeb kernel firmware now
supports true file names in the PicoWeb’s internal Web server “file system”.

Each of these issues will be discussed in the sections which follow. Some changes are mandated while others
are optional. The optional changes are usually due to the fact that the PicoWeb development system makes
certain changes automatically when the project files are processed.

Changes for GNU Assembler
The PicoWeb development system has switched from using Atmel’s 16-bit MS-DOS assembler (i.e.,
AVRASM.EXE) to a public domain version of the GNU assembler which targets Atmel AVR machine code (i.e.,
avr-as). There were a number of factors that mandated this change. Here are a few of the advantages of the
GNU-based assembler:

• Public domain source code (GPL license)
• No 16-bit MS-DOS file name restrictions (i.e., 8+3 names were required, including all directories in a

source file’s full path)
• No (known) interaction with McAfee virus protection software
• Support for object module linker (i.e., avr-ld)
• Better control over code and data placement (through the use of .section directives)
• Support for local labels through separately assembled modules (i.e., not all labels automatically “global”)
• Better assembler macro support
• Supported under multiple operating systems, including Linux
• Support for C subroutines (using gcc)

The following is a list of items that can force changes to existing PicoWeb assembly code:

• The syntax of .byte and .word directives is very different (AVRAVM.EXE vs. avr-as)
• .global directives needed to reference labels in other object modules
• Program memory is now “byte addressable” (i.e., need PM() macro in certain cases)
• Certain complex relocatable expressions cause errors (related to required link step)
• Assembler macro declaration syntax is different
• Pcode routines must be listed in global table (i.e., pcode.def)
• New code/data section directives replace .cseg, .dseg, and .eseg

GNU Assembler Documentation
An HTML document title “Using as, The GNU Assembler” (January 1994) can be found in the PicoWeb
development system’s documents directory (docs) in a file named as.html. Please consult this file for a
complete description of GNU assembler syntax. Note that all of your old assembler macro definitions will need
to be changed to the new assembler syntax.

Copyright  1999 by Lightner Engineering Page 4

Automatic Preprocessing
Because a Perl-based preprocessor is used to prepare PicoWeb pcode instructions for assembly, this
preprocessor can automatically map (i.e., “fix”) certain older Atmel assembler directives before the assembly
language source is sent to the GNU assembler. These automatic preprocessor mappings are listed in the
following table:

Assembler Directive Preprocessor Mapping
.device (line is deleted)
.listmac (line is deleted)
.dseg .data
.cseg .text
.eseg .section cgi_seeprom

(in a project file only, otherwise an error)
eseg "string" .section seeprom_cgi_strings

.dw .word

.db .byte
.equ X=y .equ X,y

.equ x,y

.equ X,Y
(Note: maps to both upper and lower case)

.byte n not changed!

.word n not changed!

In general, if all of a project’s code is located in a single project file or in source files included in that file using
#include directives, then it is likely that no changes will be required to the project’s assembly and/or pcode
source. The only exceptions will be code that uses “.byte” or “.word” directives and code that makes use of a
“.eseg” declaration to allocate storage in on-chip EEPROM memory.

Global Labels
If you project needs to make use of separately assembled object modules, then you will need to add .global
assembler directives for any label that needs to be accessed by another object module. The following is an
example:

.global mylabel
mylabel:

Program Memory Addressed as Bytes
Program memory is now treated as “byte addressable” by the assembler. Under the older Atmel assembler any
reference to a memory location in flash-based program memory was treated as a “word address”. For example,
this meant that all strings in program memory needed to be aligned on a 16-bit word boundary. This is not
longer the case with the GNU assembler. Note that AVR instructions still need to be aligned on a 16-bit word
boundary.

Certain AVR instructions still need a “word address” (i.e., icall). In situations where a “word address” is
needed the predefined assembler macro PM() can be used to convert a reference to a program memory “byte
address” into a proper “word address”.

Pcode Declarations
Pcode instructions which are defined in separately assembled object modules must be listed in the global pcode
definition file (i.e., pcode.def). The PicoWeb preprocessor makes use of this file to identify legal pcode
instructions when processing assembly source code files. A local copy of this file can be placed in the project
directory. In this case, the pcode instructions listed in this file will be merged with (and override) the
definitions in the file of the same name in the library directory (lib). Note that pcode instructions defined in
the project file, and referenced exclusively in the project file, do not need to be listed elsewhere.

Copyright  1999 by Lightner Engineering Page 5

Memory Management
The hardware of the PicoWeb server contains two integrated circuits that have volatile and non-volatile storage
which needs to be configured before the PicoWeb server can be used. One is the Atmel 90S8515
microcontroller and the other is an I2C serial EEPROM chip. The Atmel microcontroller has three kinds of
memory, static RAM (512 bytes), flash-based program memory (8 Kbytes), and on-chip EEPROM (512 bytes).
The I2C serial EEPROM chip holds between 16 and 32 Kbytes of data, depending upon the PicoWeb version.
The configuration of the “initialized” portion on the static RAM, the two EEPROM memory blocks (on-chip
and external) and the microcontroller’s flash-based program storage is controlled by assembler section
directives.

The various memory sections include the SRAM (e.g., .bss and .data sections), flash-based program memory
(e.g., .text and .cseg sections) and on-chip EEPROM (e.g., .section eeprom section) in the Atmel
microcontroller, as well as the external serial EEPROM chip (e.g., .eseg and .section seeprom sections).
In fact, the PicoWeb development environment makes use of many other GNU linker sections to control the
placement of code and data in the four basic memory blocks present in the PicoWeb server’s hardware. The
naming and order of these many linker sections is critical. The addition of new sections and/or modifications to
the master linker control script (picoweb.ld) in not recommended without a thorough understanding of the
issues involved.

The following table lists the basic assembler directives that are used to control the placement of code and data
in the PicoWeb server many memory sections:

On-Chip Flash Program Memory (8 Kbytes)

Assembler Directive Meaning
.text AVR program code and data
.section reset PicoWeb #avr_reset section
.section fast PicoWeb #avr_fast section
.section slow PicoWeb #avr_slow section
.section strings .ascii and .ascz strings in program memory

On-Chip SRAM (512 bytes)

Assembler Directive Meaning
.data initialized data
.section .bss uninitialized data (zeroed at reset)
.section COMMON named common blocks (alignment penalty!)
.section uninitialized_data uninitialized data (not cleared at reset)
.dseg mapped to ".data" by preprocessor

On-Chip EEPROM (512 bytes)

Assembler Directive Meaning
.section eeprom* initialized data in EEPROM
.section .eeprom* initialized data in EEPROM

External Serial EEPROM (16-32 Kbytes)

Assembler Directive Meaning
.section seeprom pcode and data in serial EEPROM
.section seeprom_strings strings in serial EEPROM
.section seeprom_cgi pcode and data in serial EEPROM (linked

high)
.section seeprom_cgi_strings strings in serial EEPROM (linked high)
.eseg mapped to ".section seeprom_cgi" in

project file (error elsewhere)

Copyright  1999 by Lightner Engineering Page 6

Interrupt Vector Table
Any code that makes use of the Atmel microcontrollers interrupt vector table will need to be changed. Under
the new system, each entry in the Atmel microcontroller's interrupt vector table, located at location 0 in program
memory, points to a dummy routine that consists of a single "ret" instruction. This is done using the
assembler’s ".weak" global directive.

The following shows the PicoWeb kernel’s interrupt vector table at location 0:

 .weak VEC_reset
 .weak VEC_int0_isr
 .weak VEC_int1_isr
 .weak VEC_timer1cap_isr
 .weak VEC_timer1compa_isr
 .weak VEC_timer1compb_isr
 .weak VEC_timer1ovf_isr
 .weak VEC_timer0ovf_isr
 .weak VEC_spistc_isr
 .weak VEC_rx_isr
 .weak VEC_udre_isr
 .weak VEC_tx_isr
 .weak VEC_ana_comp_isr

Any user-provided interrupt service routines need to override these table entries.

Here is a sample code fragment from the serial port’s receive interrupt service routine (see firmware source
code in the file “lib/serial.asm”):

 .global VEC_rx_isr
 VEC_rx_isr:
 push r18
 in r18,sreg
 push r18
 .
 .
 .

The assembler directive “.global VEC_rx_isr” overrides the default “weak” dummy interrupt service
routine for the serial port’s receive interrupt with a new user-supplied handler (i.e., label "VEC_rx_isr").

Complex Relocatable Expressions
Because a linker (i.e., avr-ld) is used to assemble multiple PicoWeb object modules into a single executable
file, certain complex expressions involving relocatable variables (e.g., global labels) are no longer allowed.
Please see assembler and/or linker documentation for details.

Copyright  1999 by Lightner Engineering Page 7

Changes to PicoWeb Project File
Besides the assembly language code changes detailed in the previous section about the GNU assembler, you
should not be required to make any changes to the first section of your PicoWeb project file, namely everything
up to the first #avr directive. This is the section of the project file where project-wide C-preprocessor defines
are listed, along with the project’s Web pages and CGI routines.

Nevertheless, you still may want to makes changes to your older project files in order to bring them up to date.
Here is a list of things that are different and/or improved with respect to this first section of the project file:

• New #defines for processor clock rate and serial port baud rate
• Action of certain #define statements is different (i.e., some have no effect now)
• Web page file system uses “real names” (i.e., “ii00” and “iu00” URLs are gone)
• New options to set Web pages’ content type
• The listing of CGI routines used in HTML tags is now optional
• Support added for linker directives (i.e., controls behavior of linker avr-ld)

Table 1 – PicoWeb Project Preprocessor Defines

Preprocessor Define Default Value Description

BANNER
"\r\nPicoWeb
Server\r\n"

Text string that is printed to the serial port each time the
PicoWeb server is reset

BAUD_RATE 19200

Defines the serial port baud rate. Note that #define
CLOCK must be correctly set. Not all baud rates are
available at all processor clock rates. (Consult Atmel’s
AT90S8515 datasheet for details.)

CLOCK 7372000
Defines the clock rate of Atmel microcontroller (Hz).
This is used to set the UART baud rate divisor and for
other timing-related calculations.

DEBUGGER not defined
If defined, includes the serial port debugger firmware as
part of the project build process

EEPROM_IP not defined
If defined, specifies that the PicoWeb’s IP address is
stored in on-chip EEPROM (address will come from text
file ip)

ENABLE_WATCHDOG not defined Enables the watchdog timer hardware on reset if defined

NET_CONFIG_IP not defined
Define this if to allow the PicoWeb’s IP address to be
changed over the Ethernet using the program setip

NO_ETHER_ADDR_ON_BOOT not defined
Define this to inhibit printout of the PicoWeb’s Ethernet
address to the serial port on reset

PKT_WATCHDOG_MAX 250
Idle network packet watchdog timer limit in “slow idle
loop” trip counts (recommended range: 100-254)

SEEPROM_IP not defined
Defines address in serial EEPROM which holds the
PicoWeb’s IP address. Define if you want the IP address
stored in serial EEPROM memory

STATIC_IP_LSB
STATIC_IP_MSB not defined

Define these two 16-bit constants if you want the
PicoWeb’s IP address to be “hard coded” into program
memory (defines high and low part of 32-bit IP address)

USE_BOOTP not defined Use BOOTP protocol to get PicoWeb IP address

Copyright  1999 by Lightner Engineering Page 8

New Project File #defines
Table 1 lists the PicoWeb preprocessor #define statements which affect the PicoWeb project build process.
Note the addition of the three new preprocessor defines:

#define NET_CONFIG_IP /* allow IP address reconfiguration via net */
#define CLOCK 7372000 /* clock rate of microcontroller (in Hz) */
#define BAUD_RATE 19200 /* serial port baud rate */

The first definition allows changes to a PicoWeb’s IP address from a remote host computer connected to the
PicoWeb via the Ethernet. The other two new definitions (i.e., CLOCK and BAUD_RATE) automatically calculate
the proper value needed to get the serial port UART baud rate divisor, previously set using #define
SERIAL_BAUD_DIVISOR. You will need to remove this older definition from your project file if you use the
new definitions.

Effect of Project File #defines
It is important to note that the preprocessor definitions listed in the PicoWeb project file have a very different
effect under the new development system. Under the old system a given PicoWeb project was assembled as a
single assembly language source module (with many separate source files included using #include directives).
Under the new development system, the only files these definitions affect are: assembly language source code
in the project file, those assembly source files that the project file explicitly includes (i.e., with #include), the
library file main.asm, and the linker script picoweb.ld.

Web Page Content Type
There is now more control over the content type delivered with a PicoWeb file. Note that this information is no
longer specified in the HTML file, for example, by using the special PicoWeb tag “`t”. As with the older
development system software, the first section of a PicoWeb project file lists one or more files which contain
HTML code and/or images which will be stored in the PicoWeb’s serial EEPROM memory as part of the Web
server’s “file system”. The first file in the list is the default Web server “home page”. Any files listed must
have one of the following file extensions:

.htm – HTML code (text file)

.html – HTML code (text file)

.txt – ASCII text file

.jpg – JPEG image

.gif – GIF image

.png – PNG image

.js – Javascript (text file)

.cla – Java applet (byte-codes)

.class – Java applet (byte-codes)

or they must also be followed by a HTTP content type field specification. (This is a new feature.) The
following is a list of common “content type” field values:

none
text/html
text/plain
image/jpeg
image/gif
image/png
application/octet-stream

Copyright  1999 by Lightner Engineering Page 9

If no file content type specification is given, then an appropriate content type will be assigned according to the
file’s extension. Whenever a file is supplied by the PicoWeb server in response to a Web browser’s GET
request, the following HTTP header information will proceed the delivery of the file’s contents:

HTTP/1.0 200↵
Content-type: content type↵
↵

where ↵ indicates a new-line character. Those familiar with low-level CGI programming will recognize the
significance of the HTTP header, which tells a Web browser exactly what kind of document is being returned
from the Web server in response to an HTTP GET request.

Any PicoWeb-supplied file may be assigned an arbitrary HTTP content type by providing a content type field
after the file’s name in the project file. The content type fields are not checked and can be any arbitrary string
of characters.

Note that the special content type field “none” specifies that the PicoWeb server should not proceed the file
delivered in response to an HTTP GET request with anything. In this case, the file itself (or the user-supplied
CGI code that executes) must supply the needed HTTP header. Note that certain Web browsers (e.g., Netscape)
will display without error retrieved Web pages which are missing the HTTP header. However, this is not
always the case!

True File Names in URLs
Note that the Web pages listed in the project file are now only accessible by their full file name. The old
naming scheme where the first Web file was referenced using “ii00” no longer works! As before, if no file
name is given, the first Web page in the file list is returned, namely the PicoWeb server’s “home page”.
However, if a PicoWeb URL file name is specified, and it does not match any of the listed files, then an error
indication is returned. Under the older development system’s firmware, the PicoWeb’s “home page” would be
returned, with no errors.

Listing of CGI Routines Optional
The listing of CGI routines in the first section of the PicoWeb project file is now optional. It used to be the case
that all user-supplied CGI routines referenced by special PicoWeb tags needed to be listed there. This section
now lists zero or more public pcode entry point labels for pcode routines. The extension “.cgi” must be
appended to each pcode entry point label listed in this section.

The following is a sample project Web Page CGI Routine section:

//
// application-specific CGI routines
//
temperature.cgi // iu00 (returns ASCII temperature reading (deg-f)

The above line indicates that a CGI pcode routine named “temperature” exists somewhere in the PicoWeb
server and that this routine can be accessed externally with an HTTP GET request using the following URL:

http://x.y.z.w/temperature.cgi

where x.y.z.w is the IP address assigned to the PicoWeb server.

Also, wherever the string `temperature.cgi` is found in any of the HTML source code files listed in the
Web Page File List section as part of the project, a special tag will be inserted into those files. This special tag
will cause the pcode routine “temperature” to be called at that point in the HTML code stream whenever an
HTML file containing that tag is retrieved. Note that this tag processing applies to any global pcode subroutine
label, not just those routines listed in this section.

Copyright  1999 by Lightner Engineering Page 10

Linker Directives
Support has been added for linker directives which control the behavior of the linker (avr-ld) The first
section of the PicoWeb project file may include optional directives to the PicoWeb development system’s
linker. Allowed linker directives include:

link add object
link search library

where object is the name of a PicoWeb object file and library is the name of a PicoWeb library archive. The
“link add” directive causes the linker to unconditionally include the specified object file. The “link search”
directive causes the linker to search the specified archive file to resolve any pending unresolved global symbol
references.

The following is a sample project Linker Directive section:

// linker directives (optional)
link add myobject.o
link search mylibrary.a

The “link add” directive will cause the linker to unconditionally include the object file “myobject.o” as part
of the PicoWeb firmware image. The “link search” directive will cause the linker to search the library file
“mylibrary.a” in order to resolve any global symbol references.

Variable putcok Not Needed
The SRAM variable “putcok” is no longer needed. This is now a dummy variable. Before, this variable had to
be non-zero to enable output to the serial port and/or the network. User CGI routines no longer need pcode
such as that shown in the following example:

my_cgi_routine:
 ppushn putcok,1 ; save putchar enable state
 pmovbi putcok,0xff ; putchar is now OK
 .
 .
 .
 ppopn putcok,1 ; restore putchar enable state
 pret

Changes to PicoWeb HTML Files
Depending upon exactly how you wrote the HTML code for your older PicoWeb Web pages, you may need to
make changes to those older Web page to use the new development system. The biggest change to the PicoWeb
development system’s Web page file system is largely hidden. Under the new scheme, Web pages are now
simple pcode routines. In the simplest case, a Web page may be a single pcode instruction that prints a string
with the entire contents of the Web page. This is the case with Web pages that contain JPEG and GIF images.
The other major change to the PicoWeb firmware was support for true file names in its “file system”.

Tag `t Obsolete
The special PicoWeb tag “`t” is now obsolete, as mentioned above. However, the new PicoWeb development
system will turn this tag into a “no operation” if it appears as the very first thing in a PicoWeb HTML file. We
recommend that you remove these tags from your HTML files.

Copyright  1999 by Lightner Engineering Page 11

Changes to PicoWeb Tags
The format of the special PicoWeb HTML tags has been changed. However, most of the old tags should still
give the same results with the new development system firmware. But, this is not true for tags of the form `n
where n is a number.

All new PicoWeb tags have a back-tick (`) character enclosing the tag specification (i.e., a “back-tick” at the
beginning and another one at the end). We strongly recommend that you change your HTML tags to use the
equivalent “new format” tags. Table 2 shows a list of the new PicoWeb tags. As before, only tags in HTML
files are recognized (i.e., .htm and .html files). Note that routines listed in PicoWeb tags still need to be
written in pcode. However, they do not need to be listed in the PicoWeb project file in order to be referenced as
part of a tag.

No Automatic Processing of URL Parameters
There is no longer any automatic processing of the HTTP GET request URL parameters for a parameter of the
form “n=s”. The PicoWeb sample project “webled” made use of this now obsolete feature. In order to get the
old behavior, you must include the following tag at the beginning of your Web page’s HTML code:

`pchk_port_url_parms.cgi`

True File Names in URLs
As noted above, the Web pages listed in the project file are now only accessible by their full file name. The old
naming scheme where, for example, the first Web file was referenced using an index “ii00” no longer works!
This means that if your HTML code explicitly referenced a Web page or CGI routine by its “index” then you

Table 2 - PicoWeb HTML Tags

Tag Meaning

`routine.cgi` Call pcode routine “routine”.
`routine.cgi?parm` Set global parameter psetparm_parm to “param”, then

call pcode routine “routine”.
`?routine.cgi?parm` texteq { textneq } Set global parameter psetparm_parm to “param”, then

conditionally call pcode routine “routine”. Conditionally
output text according to the state of the pcode “Z flag”. If
Z=1, output text “texteq”; if Z=0, output text “textneq”.

`?routine.cgi?parm@label.cgi` Set global parameter psetparm_parm to “param”, then
conditionally jump to the label named “label” according
to the state of the pcode “Z flag”. If Z=1 then the jump is
taken.

`=label` Place a label named “label” in the pcode which outputs
the HTML code which follows. May be “called” from
other HTML code using `label.cgi`.

`@label.cgi` Unconditional jump to pcode “label”. Normally this is a
location in an HTML code file labeled using the tag
`label.cgi`.

`t Removed if first item in a PicoWeb HTML file
(compatibility)

Notes:

1. The affect of the “Z flag” can be reversed in the conditional call/jump tags (i.e., `?...`) by following the leading
“?” with a “!” (i.e., `?!routine.cgi?parm@label.cgi`).

2. The value “param” shown in the table can take any of the following forms:

• 0xhhhh A 16-bit hexadecimal value “hhhh” (e.g., 0x8000)
• ddddd A 16bit decimal value “ddddd” (e.g., 32767)
• “string“ A text string delimited by double-quotes (e.g., “hello“)

Copyright  1999 by Lightner Engineering Page 12

will need to make changes. Any references to “iihh” or “iuhh” (where hh is the file’s hexadecimal index
number) will need to be changed to use the true name of the target file.

Bad URL No Longer Returns Home Page
As with the old firmware, if no file name is given in a URL, the PicoWeb server’s “home page” is returned.
However, if a PicoWeb URL file name is specified, and that name does not match any of the listed files, then an
error indication is returned. This will be an issue if you have depended upon this behavior, for example in the
ACTION statement in an HTML FORM. (For example, the old version of the sample project “webled” made
use of this “feature”.)

Latent Pcode Bugs
As we switched our many PicoWeb sample projects to the new development system, we uncovered a number of
latent bugs relating to the misuse of the pcode parameter syntax in places where a memory address was
expected (i.e., not an “immediate” value). The following syntax:

[byte buf]

needed to be changed to:

[buf]

in many places because in these cases the pcode instructions’ parameter was supposed to be an SRAM address.
Note that [byte buf] specifies an indirect memory reference to memory location (*buf & 0xff). The
second (correct) example does not discard the upper byte of the final target address (i.e., after indirection)! The
first example worked under the old development system because the target SRAM location contained in buf
happened to be below address 0x100. This was not the case under the new development system. Here is a list
of sample project pcode instructions from which we needed to remove the “byte” modifier:

pmovb SD_CHAR,[byte pana_ptr]
pmovb buf,[byte pana_ptr]
pmovb buf,[byte rcs_ptr]
pputcb [byte DIG_PTR]
pputcb [byte rcs_ptr]

All of the above-listed pcode instructions are wrong!

The most common occurrence of this latent bug was in the often copied pcode routine named decconv which
printed out a 16-bit number stored in buf as ASCII text. (Note that this is better done under the new
development environment using the single pcode instruction “pprintswi [buf]”.)

New Pcode Instructions

Processing URL FORM Parameters
A number of new pcode instructions have been added which provide for simple processing of parameters passed
as part of the HTTP GET “URL line”. These parameters are typically passed to the PicoWeb when an HTML
FORM button is pressed. If you have a project that needs to access parameters of this kind, then we strongly
suggest that you take a look at the PicoWeb samples and see how this can be done with the new pcode
instructions. (The sample project “serdev” makes use of these new instructions.)

Here is a sample CGI pcode routine that will print the string which follows the parameter “S=” in a URL line:

print_string:
 purlparm buf,"S=" ; search for command string
 pjumpne 1f ; skip ahead if not found
 pprinturl buf,0 ; write text after M=
1:
 pret

Copyright  1999 by Lightner Engineering Page 13

Here is sample code that will convert to binary, then print the value of the decimal integer value after the URL
parameter “I=” in a URL line:

print_int:
 purlparm buf,"I=" ; search for command string
 pjumpne 1f ; exit if not found
 purl2int buf+2,buf ; found...convert to integer (store at buf+2)
 pprintswi [buf+2] ; print signed integers as text
1:
 pret

Pcode Stack Frames
The new PicoWeb development system has pcode instructions for using a “stack frame”. This is useful for
passing parameters to pcode routines on the hardware stack, as well as for allocation of temporary SRAM
storage for use in pcode routines. Please see the document “PicoWeb Pcode” for details.

C Routines
The GNU C-compiler gcc will work with the PicoWeb development system. The document “How to Build a
PicoWeb Project” has more details. Please consult the PicoWeb sample project “sieve” for an example.

7/22/00 11:08 PM

