
www.circuitcellar.com/online CIRCUIT CELLAR ® ONLINE July 1999 1

he recipe is
easy. Take an

Atmel single-chip
microprocessor, hook

it up to an off-the-shelf
PC network card, add a little code,
and presto—you’ve got the web
server shown in Photo 1. This circuit
is so simple that you can build it in
an evening and add worldwide web
access to your favorite embedded
application.

The PicoWeb server provides
web access to digital I/O and serial
I/O signals without the need for
assistance from external PCs or
Unix computers. It’s a stand-alone
device with a real-time networking
kernel, a TCP/IP stack, and an
HTTP web server. Plug the device
into an Ethernet cable connected to
the Internet, and you can control
your sprinklers from any place on
the planet.

This project started partly as an
excuse to use a new microprocessor
and partly to settle a long-standing
argument about the possibility of
delivering web pages with a com-
modity microcontroller. The Atmel
AT90S8515 microprocessor looked
exciting with its low-power RISC

A $25 Web Server

“See the world’s small-
est web server. There
are no age or height
restrictions, but we’re
talking real excitement.
Step right up and see
how these guys put
together a stand-alone
web server that includes
an Ethernet controller,
real-time networking
kernel, TCP/IP stack,
and a PCB smaller than
a business card.

processor, 8 KB of flash program
memory, 512 bytes of EEPROM,
512 bytes of RAM, 32 I/O lines, and
a built-in UART. The realization that
we could attach the Atmel part to an
inexpensive PC ISA-bus network
card with zero glue logic gave us a
test vehicle to finally settle our
argument (see Figure 1).

With an execution rate of one
instruction per clock and a clock rate
of 8 MHz, the AT90S8515 can
transfer data over the ISA bus at full
speed (about 2 MBps). All the
hardware we needed to make a web
server was quickly put into place.
For debugging purposes, we hooked
up the micro’s serial port to a cable
with an RS-232–level converter
embedded in the DE-9 connector’s
hood. We also added a single LED
for feedback.

After all that, we still had a little
bit of money left in our $25 budget,
so we threw in a $2 16-KB serial
EEPROM chip to hold things like
GIF and JPEG images (web pages
need pictures, don’t they?). With all
the hardware together, it was just a
matter of programming!

NETWORK ADAPTER
We chose an inexpensive

“NE2000-compatible” PC Ethernet
ISA-bus adapter for our breadboard
setup. We needed to find an ISA-
bus Ethernet adapter that could be
configured to not use plug-and-play
mode. Typically, disabling plug-and-
play mode is done with an MS-DOS
diagnostic program supplied with the
network adapter.

True NE2000-compatible adapt-
ers will work out-of-the-box with the
Novell/Anthem NE2000-compatible
device driver supplied with Windows
95. Source code for MS-DOS packet
drivers for NE2000 Ethernet adapt-
ers have long been available on the
web, making such cards an excellent
choice for projects like this.

We used an SN2000CT card that
we picked up at our local Fry’s
Electronics store, but any true
NE2000-compatible adapter will
work if you can manage to turn off
plug-and-play mode and set the
adapter to a fixed I/O address. We

t

FEATURE
ARTICLE
Steve Freyder, David Helland,
and Bruce Lightner

2 July 1999 CIRCUIT CELLAR ® ONLINE www.circuitcellar.com/online

chose an I/O base address of 0x300
for our project. Because we are not
using interrupts, it doesn’t matter
how the card’s interrupt request
(IRQ) is configured.

Those familiar with the PC/AT
ISA-bus will note that a 16-bit ISA
card can use up to 88 unique bus
signals, excluding power and ground
connections (see Table 1). The
Atmel microcontroller only has 32 I/O
lines, so how do you connect a 16-bit
PC adapter card to the micro?

First, the network adapter card
isn’t wired to all of the possible ISA-
bus signals. We can easily deter-
mine which ones are used by looking
at the copper traces coming from the
circuit board’s connectors.

Second, the network card doesn’t
need a number of other ISA-bus
signals because of the mode in
which we are using it (i.e., no DMA,
no interrupts). And lastly, we can
hardwire a number of the card’s
input signals (i.e., to +5V or ground).

Because we aren’t using DMA or
interrupts, we can ignore all of those
signals, except AEN, which we wire
to ground to indicate that DMA is not
active. We need to hardwire
*SMEMR to +5V to inhibit reads from
the network card’s optional onboard
ROM and hardwire the upper 15
ISA-bus address bits (SA5–SA19) to
match the I/O base address to which
the adapter has been configured
(i.e., 0x300).

This arrangement leaves us with

only 25 signals that need
to be wired up to the
Atmel microcontroller—the
16 bidirectional ISA-bus
data lines (SD0–SD16),
the remaining five ISA-bus
address lines (SA0–SA4),
RESET DRV, *IOW, and
*IOR. (By adding a latch
for the re-maining five
ISA-bus address bits, we
could have shared those
lines with the data bus
signals, freeing up five
more general-purpose I/O
pins on the Atmel part.)

An NE2000-compat-
ible Ethernet adapter is
optimal because our

processor is memory-limited. Such
adapter cards have 16 KB of
onboard SRAM—32× more than the
Atmel microcontrol-ler’s 512 bytes.

Part of the network adapter’s SRAM
functions as a ring buffer to allow
unattended reception of back-to-
back Ethernet frames in case the
controlling processor is busy doing
other things. The rest of the Ethernet
controller’s SRAM can be used to
assemble transmitted Ethernet
packets.

The net result is that very little of

the Atmel microcontroller’s meager
512 bytes of SRAM is needed for the
sending and receiving of Ethernet
packets. After all, a single Ethernet
packet can be as large as 1500
bytes! The real clincher is that this
board can be purchased for as little
as $8.88.

FIRMWARE DESCRIPTION
The PicoWeb server’s demon-

stration firmware supports a simple
kernel, a tiny debug monitor, a p-
code interpreter, a network adapter
driver, a TCP/IP stack, and an HTTP
server (i.e., web server). Let’s look at
what kinds of network messages the
PicoWeb server responds to and what
the responses are.

At the lowest level, the PicoWeb
server responds to network ARP
requests identifying it as an active
device on the network with an as-
signed IP Address. Every PicoWeb
server is assigned a unique Ethernet
address that is sent as part of the
ARP reply packet.

Next, we’ll look at the BOOTP
request. An IP address can be
assigned to the device statically by
storing the device’s IP address in the
microcontroller’s flash memory or
dynamically by using the BOOTP

Photo 1— Here’s the PicoWeb server breadboard with a $9 ISA-bus
network card and an Atmel AT90S8515 8-bit microcontroller. Connectors at
the bottom provide a serial port and an in-circuit programming port using a
PC parallel port cable. Power (150 mW typical) is supplied by a +5-VDC
wall wart.

Figure 1— The PicoWeb server breadboard makes a simple "glueless" connection of an Atmel AT90S8515
microcontroller to a PC ISA-bus connector. Also included is a 24C128 16-KB serial EEPROM, diagnostic LED,
manual reset switch, connectors for power, serial port, and the in-circuit programming cable. The inset shows the
wiring diagram for a PC parallel-port programming cable.

www.circuitcellar.com/online CIRCUIT CELLAR ® ONLINE July 1999 3

Pin Signal Pin Signal Pin Signal Pin Signal
A1 I/O CH CK B1 GND C1 SBHE D1 *MEM CS16
A2 SD7 B2 RESET DRV C2 LA23 D2 *I/O CS16
A3 SD6 B3 +5 VDC C3 LA22 D3 IRQ10
A4 SD5 B4 IRQ2/9 C4 LA21 D4 IRQ11
A5 SD4 B5 –5 VDC C5 LA20 D5 IRQ12
A6 SD3 B6 DRQ2 C6 LA19 D6 IRQ15
A7 SD2 B7 –12 VDC C7 LA18 D7 IRQ14
A8 SD1 B8 0WS C8 LA17 D8 *DACK0
A9 SD0 B9 +12 VDC C9 *MEMR D9 DRQ0
A10 I/O CH RDY B10 GND C10 *MEMW D10 *DACK5
A11 AEN B11 *SMEMW C11 SD8 D11 DRQ5
A12 SA19 B12 *SMEMR C12 SD9 D12 *DACK6
A13 SA18 B13 *IOW C13 SD10 D13 DRQ6
A14 SA17 B14 *IOR C14 SD11 D14 *DACK7
A15 SA16 B15 *DACK3 C15 SD12 D15 DRQ7
A16 SA15 B16 DRQ3 C16 SD13 D16 +5 VDC
A17 SA14 B17 *DACK1 C17 SD14 D17 MASTER
A18 SA13 B18 DRQ1 C18 SD15 D18 GND
A19 SA12 B19 *Refresh
A20 SA11 B20 CLK
A21 SA10 B21 IRQ7
A22 SA9 B22 IRQ6
A23 SA8 B23 IRQ5
A24 SA7 B24 IRQ4
A25 SA6 B25 IRQ3
A26 SA5 B26 *DACK2
A27 SA4 B27 T/C
A28 SA3 B28 BALE
A29 SA2 B29 +5 VDC
A30 SA1 B30 OSC
A31 SA0 B31 GND

protocol. When configured for
dynamic IP address assignment, the
PicoWeb server will begin sending
periodic BOOTP requests after
powerup until an appropriate reply is
received.

The PicoWeb server’s unique
Ethernet address is broadcast as part
of the BOOTP request packet. If a
valid BOOTP response is received,
the PicoWeb server uses the con-
tents of the response to set its IP
address. A Windows 95/98/NT
version of a BOOTP server program
is also available. This program uses
a text file that maps PicoWeb server
Ethernet addresses into assigned IP
addresses.

The PicoWeb server also re-
sponds to ICMP echo, or ping,
requests. The server responds to
ICMP echo requests by responding
with an echo reply. ICMP echo
requests are typically generated by
using a program called ping on a
remote host. The ping program
enables users to quickly test network
connectivity with the PicoWeb server
and evaluate the round trip time

(RTT) of the echo request/replies.
The PicoWeb server can send

and receive UDP packets. However,
the breadboard prototype’s demon-
stration firmware does not make use
of this capability.

At the TCP/IP level, the PicoWeb
server responds to HTTP GET
requests that are addressed to its IP
address. HTTP GET requests are
sent by web browsers such as
Netscape Communicator or Micro-
soft’s Internet Explorer. Our web
server responds to these requests
by sending back HTML documents,
text, images, and so on, just like a
“real” web server. The only difference
is that we don’t need a giant OS with
its attendant large memories, fancy
TCP/IP stacks, expensive micropro-
cessors, and high power consump-
tion to get the same results!

The demonstration firmware
purposely restricts the maximum
size of an HTTP GET response to a
single Ethernet packet (i.e., no more
than 1400 bytes of TCP/IP payload)
to conserve memory resources. In
the context of an embedded web

server using this class of low-cost
microcontroller, this restriction is not
an unreasonable tradeoff. A number
of HTML coding techniques can be
used to work within these limits,
including the use of HTML frames
and the “gluing together” of multiple
GIF and JPEG images using things
like HTML tables.

The demonstration firmware’s
basic response to an HTTP GET
request is shown in Photo 2. The
basic response is to return a web
page that shows a title, two radio
buttons, an update button, and a few
JPEG images. The two radio buttons
show the state of the LED on the
demonstration board.

The user can click the radio
buttons to change the state of the
LEDs (i.e., to on or off) and then
click the Set LED button to send the
new state information to the Pico-
Web server. The server responds by
setting the LEDs according to the
request and then updates the
returned web page to reflect the
current state of the LEDs. Those of
you familiar with server-side web

programming will
recognize this as
the typical behavior
of a cgi-bin script.
The images shown
on the sample web
page are also
supplied by the
PicoWeb server.

The PicoWeb
server demonstra-
tion firmware
contains a simple,
extensible
debugger that
provides for things
like memory
dumps, EEPROM
alteration, p-code
and network tracing
control, and more.
Debugger com-
mands such as
those in Table 2 can
be entered via the
serial port, or via
the network using a
web browser and a
URL that refer-

Table 1—The PC/AT ISA-bus signals in red and green are required
by the NE2000 network adapter. The signals in green are connected
to the Atmel microcontroller and the signals in red are “hardwired” to
power and ground. We were able to connect the Atmel micro to the
ISA bus with no extra logic.

4 July 1999 CIRCUIT CELLAR ® ONLINE www.circuitcellar.com/online

ences a special TCP port (i.e., port
911).

The format of a debugger com-
mand URL is http://
IPaddress:911/command[
[+parameter1]]+paramet-er2]

Any results from executing a
debug command will be returned as
a web page. For example, http://
IPaddress:911/dm+60+80 will list
the contents of the first 128 bytes of
the microcontroller’s SRAM. New
debugger commands can easily be
added (or deleted to save program
code space).

The PicoWeb server’s prime
function is to return web pages and
images in response to HTTP GET
requests directed to URLs targeting
its HTTP server. The PicoWeb
server’s firmware responds to URL
queries directed to TCP port 80 in a
conventional manner. Because the
PicoWeb server doesn’t have a true
file system, URLs trigger dedicated
routines in the firmware as opposed
to simply returning the contents of a
disk file.

A summary of the standard URLs
implemented in the PicoWeb
server’s demonstration firmware are
shown in Table 3 (note that the
http://IPaddress part of the
URL does not appear in the table).
Either http://IPaddress or
http://IPaddress/ii00.html
will retrieve the default web page
(home page) from the PicoWeb
server.

SOFTWARE DEVELOPMENT
You’re probably wondering: “How

does all of this fit in an 8-KB micro-
processor?” The answer: “Very
carefully!” We wrote the software to
efficiently implement the necessary
network protocol layers by using a p-
code technique to conserve code
space in exchange for somewhat
reduced execution speed.

Time-critical network code is left
in native Atmel RISC code. As a
result, the actual space used by the
PicoWeb server demo firmware is
under 7000 bytes, including debug-
ging code. Therefore, space remains
for developers to roll their own code
and add even more functionality to

the PicoWeb server.
Because p-code can be run from

the serial EEPROM chip (at a greatly
reduced execution rate), a substan-
tial amount of added functionality is
possible. The present development
environment allows custom applica-
tion development without the need
for access to the underlying real-time
networking kernel source code. The
source code for the PicoWeb server
real-time networking kernel is
available for license by serious
developers.

The software development envir-
onment used for the project made
use of the Atmel free assembler,
which can be downloaded from
Atmel’s web site.

To enhance the capabilities of the
assembler, a Windows version of the
GNU C preprocessor was used to
add certain macro/
include file capa-
bilities that were
conspicuously
missing from the
Atmel product.
Atmel sells a $49
development kit
for the
AT90S8515 that
enables users to
quickly get up to
speed and down-
load programs into
the AT90S8515’s

flash memory.
The AT90S8515 processor

allows in-circuit programming of its
flash memory via a four-wire SPI
interface. To eliminate the need for
the $49 development kit, a C pro-
gram was written to enable a PC to
program the Atmel microprocessor
on our breadboard in-circuit via a
cable attached to a PC parallel port.

The HTML-like code in Listing 1
displays a web page that provides
the status of the breadboard’s
onboard LED and provides an HTML
form that enables the user to control
the LED.

Special tags beginning with a
back-tick (`) are embedded in
standard HTML code. These tags
invoke firmware routines when a
web page containing them is returned
to the requestor. The tags can be
used to dynamically insert variable
data and text into a web page when
ref-erenced. Table 4 shows a
number of the tags implemented in
the PicoWeb server demonstration
firmware.

The tag `t outputs a standard
HTML text header. The tag `100
outputs the string input type=
and is used as an example of how to
save EEPROM storage space. `001
is an example of a dynamic tag. It is
part of a kind of “if-then-else”
construct. In Listing 1, if the value of
output bit 1 is zero (i.e., the LED is
on), the first radio button on the web
page will include the CHECKED
string; otherwise the string is omit-
ted. If the output bit 1 is one (i.e.,
LED is off), then the second ratio
button will include the CHECKED

Photo 2— Everything on this web page is delivered
directly by the PicoWeb server including the JPEG
images. A user can change the state of the PicoWeb’s
diagnostic LED using the radio buttons. The tempera-
ture shown is from a Dallas DS1621 two-wire digital
thermometer chip attached to the PicoWeb using a
couple of unused digital I/O lines.

Command Description

dm XXXX nn dump SRAM from XXXX...XXXX+nn-1
de XXXX nn dump EEPROM from XXXX...XXXX+nn-1
ds XXXX nn dump serial EEPROM from XXXX...XXXX+nn-1
wm XXXX YY write SRAM address XXXX with byte YY
we XXXX YY write serial EEPROM address XXXX with byte YY
ws XXXX YY write EEPROM address XXXX with byte YY
l toggle TCP packet logging on/off
pd n control p-code debug trace (0=off; 1=on)
PC XXXX call p-code routine at address XXXX
R reset processor
^C reset processor (serial port only)

Table 2—Debugger commands like these can be sent over the network using a web
browser or via the PicoWeb’s serial port.

www.circuitcellar.com/online CIRCUIT CELLAR ® ONLINE July 1999 5

string.
 An example of how to extend the

functionality of the PicoWeb server is
shown at the end of Listing 1. In this
case we hooked up a Dallas DS1621
two-wire digital thermometer chip to
our breadboard. The tag `701
invokes a p-code routine stored in
serial EEPROM that takes a reading
from the Dallas chip and returns a
text string with the decimal tempera-
ture reading converted to degrees
Fahrenheit. The resulting real-time
temperature can be seen in Photo 2.

Another way to add features to
the returned web page is by using
the serial port to talk to an external
device that supports serial communi-
cations (e.g., a test instrument). A p-
code routine triggered by a special
tag can send a command out the
serial port to the external device.
The external device can then
interpret the command and send
data back to the PicoWeb server
over the serial port. That data can be
inserted directly into the returned
HTML web page or additional p-code
can be executed to format the data
before insertion in the returned web
page.

Note in Listing 1 that three JPEG
images (ii01.jpg, ii02.jpg,
and ii02.jpg) are referenced by
the demo web page. These JPEG
images are supplied by the PicoWeb
server from the breadboard’s serial
EEPROM.

FIRMWARE DEVELOPMENT
ENVIRONMENT

A p-code instruction interpreter
was developed for the PicoWeb
server. The use of p-code provided
program code simplification, the
option to execute program code out

of EEPROM (including external
serial EEPROM), and in many
cases, a reduction in program code
size when compared to native code.

Code simplification is achieved
because the p-code makes no
reference to native registers, and
because the p-code "virtual ma-
chine" uses 16-bit-wide data types
for most operands. P-code execution
from EEPROM is possible because
the p-code instruction pointer is 16
bits wide, with the uppermost bit
indicating (when set) that the next p-
code instruction should be fetched
from EEPROM and not from the
Atmel microcontroller’s 8-KB flash
program memory. Program size
reduction results from a combination
of factors, including efficient applica-
tion-specific p-code routines and
flexible p-code operand addressing
modes.

A description of the many p-code
routines is beyond the scope of this
article, but user p-code documenta-
tion is supplied with the breadboard

software development package.
The software build environment

is based on Windows 95, 98, or NT.
Although we use the standard Atmel
assembler for firmware code gen-
eration, the source code is first
passed through a public-domain C
preprocessor and a Perl script
before being sent to the assembler.
The build procedure is controlled by
a simple batch file.

The build batch file performs a
series of steps, the first of which is to
run the C preprocessor to generate
an intermediate file (.i) from a set
of input source (.asm) files. The
next step is running a Perl-based
string extraction program that
collects all of the quoted text strings
and stores them in a separate file for
inclusion (using .include) at the
end of program memory.

As the third step, the batch file
runs a Perl script that spawns the
assembler and postprocesses any
error messages to convert the
associated line number back to an
original input file name and line
number. The postprocessed error
output is written to standard output
and is compatible with the error
browser provided by Microsoft’s C++
Visual Studio.

Next, a Perl script that post-
processes the .EEP file to separate
the Atmel-based EEPROM segments
from the external serial EEPROM
segments is run.

The final step is to run a Perl

Listing 1— This HTML-like code delivered the web page shown in Photo 2. The special tags beginning with a
back-tick (`) activate PicoWeb firmware routines that insert text into the HTML document stream when the
page is retrieved by a web browser.

URL Description

/ Return document ii00.
/iihh Return document number hh to user. Documents numbers are two-

digit hex values. Anything after hh in the URL is ignored.
/iuhh Call firmware routine number hh. Mostly useful for testing “html

include” routines.
/x?n=value Set digital I/O port bit n to value where value is either 0 or 1.

Because the breadboard LED’s anode is connected to bit 0, the
command “/x?2=0” turns on the LED.

Table 3—Certain PicoWeb server firmware routines can be activated by referencing special URLs. This arrange-
ment provides simple remote control of the Atmel micro’s digital I/O lines.

`t<html>
<head><title>WebLED</title></head>
<body text=#000000 bgcolor=#c0c0c0>
<center>
<h2>Frey 'n Hell Light WebLED v1.26</h2>
<FORM name=mfrm method=GET action="/x">
<`100radio NAME=4 VALUE=0 `001CHECKED{}>on

<`100radio NAME=4 VALUE=1 `001{CHECKED}>off

<`100submit VALUE="Set LED">
</FORM>
©1998-1999 Freyder, Helland & Lightner

The current temperature reading is `701°F
</center>

script that processes a text file with a
list of web pages and images to be
included in the build and produces a
binary load image file suitable for
use with our network-based serial
EEPROM loader (netprog.pl).
The complete build procedure only
takes a couple of seconds on a
Pentium II–based PC.

A full software build produces the
following files that need to be
downloaded into the PicoWeb
server:

 • picweb.rom—Atmel flash code/
 data in generic ROM format
 • picweb.ep—Atmel EEPROM
 data in generic ROM format
 • picweb.el—serial EEPROM p-
 code/data in EEPROM
 loader format
 • images.dat—serial EEPROM
 HTML, GIF, and JPEG data

The first two files are used to
program the flash memory in the
Atmel microcontroller, and the last
two files are used to program the
PicoWeb server’s onboard serial
EEPROM.

Programming of all flash memory
and EEPROM data is controlled via
a batch file that invokes the pro-
gramming utility to program the
microcontroller’s flash memory with
the contents of picweb.rom and (if
nonempty) programs the on-chip
EEPROM with the contents of
picweb.ep.

The batch file also invokes the
Perl-based netprog.pl script to
program the serial EEPROM with

the contents of picweb.el and
images.dat (via the network).

Programming the Atmel micro-
controller takes less than 20 s.
Programming the serial EEPROM
via the network connection takes a
similar amount of time, depending
on the amount of p-code and web
page data placed in the serial
EEPROM.

 We developed the parallel port
programming tool (PPPT) so that it
would not be necessary to remove
the Atmel microcontroller chip from
the breadboard and plug it into a
separate programmer to change the
firmware. Our program was inspired
by the BASIC program from Jeff
Bachiochi’s “Learning to Fly with
Atmel’s AVR” article (Circuit Cellar
101).

The PPPT is a 16-bit MS-DOS
program written in C that will run
under Microsoft Windows in an MS-
DOS Prompt window. The program
requires a simple cable that you can
build yourself (see Figure 1 for the
cable pinouts). By plugging the cable
into the programming connector on
the PicoWeb server, the AT90S8515
can be programmed in-circuit using
a PC’s parallel port.

We like our program better than
the similar program provided with the
Atmel AVR demo kit because,
besides being free, PPPT repro-
grams Atmel parts about twice as
fast as the AVR demo kit. PPPT also
has both command-line and menu-
driven interfaces (see Table 2 for a

summary of the commands). Here’s
a sample command line we use (in a
batch file) to erase, download both
program memory and EEPROM, and
then reset the PicoWeb server:

pppt -ce -lp test.rom �le test.eep -en

Our programming tool allows the
AT90S8515’s program memory and
EEPROM to be dumped, modified,
saved, or loaded via standard .ROM
files produced by the Atmel assem-
bler.

THE NEXT GENERATION AND
BEYOND

Eventually we got the PicoWeb
server breadboard working and
settled our argument about the

Tag Meaning

`t Emit HTML header string
`0hh If port bit hh is low; emit

HTML text from stream up
to ‘{‘, then skip text up to next ‘}’.
If port bit hh high,skip HTML text
up to next‘{‘, then emit text up to
next ‘}’.

`1hh Emit string number hh.
`7hh Invoke “user p-code”

routine number hh.

Table 4—Special tags embedded in PicoWeb web
pages invoke firmware routines that can insert text into
a dynamic HTML code stream. These tags can be
used to do things like take a temperature reading and
return a text string with the current temperature. Table 5—Our PPPT can be used to quickly download

the PicoWeb micro’s program and data memory in-
circuit using a standard PC parallel port. A number of
PPPT commands are available to load, dump, and
patch the Atmel chip’s flash memory via its simple four-
wire SPI programming interface.

Command description

Chip Erase
Write Lock bits
Load Program memory
from file
Load EEPROM from file
Save Program memory to file
Save EEPROM to file
Display Program memory
Display EEPROM
Display Device codes
Alter Program memory
Alter EEPROM
Quit program

Photo 3— Here’s the fully integrated PicoWeb server.

Menu
command

CE
WL
LP

LE
SP
SE
DP
DE
DD
AP
AE
Q

feasibility of putting cheap microcon-
trollers on the Internet. We proved
that cheap web-enabled embedded
microcontrollers are indeed feasible,
but our breadboard wasn’t pretty and
it was way too big!

The next step was to take the
PicoWeb server breadboard’s
components, combine them with the
ISA-bus Ethernet adapter’s compo-
nents, and lay everything out on a
single PCB. To save on circuit board
area, the surface-mount version of
the Atmel AT90S8515 was used
along with a low-cost highly inte-
grated version of an NE2000-
compatible Ethernet controller, the
Realtek RTL8019AS. The result is a
simple two-sided 1.4″ × 3″ circuit
board (smaller than a business card)
that fits into an extended DB-25
connector hood (see Photo 3).

The Realtek RTL8019AS
Ethernet controller is a single-chip
NE2000-compatible device with on-
chip RAM that only needs a trans-
former, a single resistor, and a few
capacitors to implement a complete
10BaseT Ethernet network connec-
tion. Therefore, an Atmel AT90S-
8515 microcontroller, a Realtek
RTL8019AS Ethernet chip, two
crystals, a transformer, RJ-45 and
DB-25 connectors, and a few
resistors, capacitors, and LEDs are
the only components needed to
construct this ultra-small PicoWeb
server.

While we were at it, we added a
+5-V regulator and a Maxim RS-
232–level shifter. We kept the
breadboard’s 16-KB serial EEPROM
chip. Because the Realtek chip
supports an 8-bit data bus, we were
able to free up eight more I/O pins
on the Atmel microcontroller. As a
result, the DB-25 connector has 16
free digital I/O lines, as well as an
RS-232 serial port. The total parts
cost remained under our $25 target.

The printed-circuit version of the
PicoWeb server supports all the
functions of the breadboard version
plus a few additional features. There
are now 16 bits of external digital I/O
available over the DB-25 connector.
Two of the DB-25 pins carry the
AT90S8515’s serial port transmit and

Bruce Lightner works from home for
Lightner Engineering in La Jolla, CA.
He too discovered computers
several decades ago and has been
building hardware and software for
them ever since. You may reach him
at lightner@lightner.net.

Collectively, the authors are often
referred to as "Frey n' Hell Light" by
their friends.

SOURCES

AT90S8515
Atmel
(408) 441-0311
Fax: (408) 436-4200
www.atmel.com

RTL8019AS
Realtek Semiconductor Corp.
+886-3-5780211
Fax: +886-3-5776047
www.realtek.com.tw

DS1621
Dallas Semiconductor Corp.
(972) 371-4000
Fax: (972) 371-3715
www.dalsemi.com

NE2000-Compatible Ethernet
Adapters
Allied Telesyn Int’l.
(800) 424-4284
Fax: (425) 489-9191
www.allied-telesyn.com

PicoWeb server
Lightner Engineering
(619) 551-4011
Fax: (619) 551-0777
www.picoweb.net

Steve Freyder telecommutes from
home for Science Applications
International Corp. (SAIC) working
on automated toll-collection sys-
tems. He lost his office at SAIC in
San Diego many years ago by never
visiting it. Steve has been program-
ming since he first discovered
computers in high school in 1970.
You may reach him at
steve@freyder.net.

David Helland works for SAIC, most
recently on portable electronics for
military training range systems. Dave
has been building hardware and
software systems for several de-
cades now, and in his spare time, he
restores vintage fiberglass dune
buggies. You may reach him at
dhelland@worldnet.att.net.

REFERENCES

Atmel Corp., “AT90S4414/
AT90S8515—8-bit AVR
Microcontroller with 4K/8K
Bytes In-System Program-
mable Flash,” Rev. 0841E–04/
99, 1999.

RESOURCE

Information on the printed-circuit
version as well as software,
firmware, and development tools
for the PicoWeb server can be
found at www.picoweb.net/.

receive lines using standard RS-232
levels. In-circuit programming of the
Atmel microcontroller also is via the
DB-25 connector.

The onboard regulator accepts
either AC or DC power in the range
of 6–30 V. Typical current consump-
tion is under 30 mA from the +5-VDC
supply.

What we seem to have created is
the world’s smallest, cheapest, and
lowest power web server. However,
given the rapid pace of technology,
these records surely won’t stand for
long!

SOFTWARE

Software for the PicoWeb server
breadboard is available via the
Circuit Cellar web site.

Circuit Cellar, the Magazine for Computer Applica-
tions. Reprinted by permission. For subscription
information, call (860) 875-2199 or
subscribe@circuitcellar.com

