
Copyright 1999 by Lightner Engineering Page 1

PicoWeb Pcode

Introduction
A pcode instruction interpreter was developed for the PicoWeb Server. The use of a custom pcode provides:

• program code simplification,
• the option to execute program code out of EEPROM (including external serial EEPROM), and
• in many cases a reduction in program code size as compared to native code.

Code simplification is achieved because the p-code makes no reference to native registers, and because the pcode
"virtual machine" uses 16-bit wide data types for most operands. Pcode execution from EEPROM is possible
because the pcode "instruction pointer" is 16 bits wide, more than is needed to address the program memory in the
Atmel microcontroller. Therefore, the “extra” address bits can be used to indicate that the next pcode instruction
should be fetched from EEPROM, and not from the microcontroller’s internal program memory.

PicoWeb Pcode Interpreter
Pcode Virtual Machine - The pcode virtual machine has no explicit registers, with the exception of a pcode flags
register and a pcode program counter. Instead, most pcode instructions reference SRAM locations in the
microcontroller. The same memory location labels used as part of normal AVR assembly language programming
can be used as part of a pcode instruction instance. For example, the pcode instruction:

 pincw buf

increments the two-byte value stored at SRAM label buf. By convention, the PicoWeb server’s standard pcode
uses an n-byte scratch buffer located starting at SRAM location buf for general purpose working storage, a kind of
pcode “register set”.

The pcode interpreter maintains a separate 5-deep pcode return address stack which is used store return address
needed to implement the pcall and pret pcode instructions.

Refer to the section PicoWeb Pcode Instruction Definitions for a list of legal pcode instructions along with a
description of their required operands. Pcode instructions can have a maximum of three operands. Most pcode
built-in instructions work with 16-bit words. Like the AVR microcontroller, these 16-bit words are stored in
memory in “little-endian” format (i.e., low byte is stored first in memory).

PicoWeb pcode can be freely intermixed with AVR assembly language providing that a pbegin pcode instruction
us used to enter a pcode section and a pend pcode instruction is used to exit a pcode section. Failure to observe this
rule will produce unpredictable results. (The pcode instruction pbegin is an AVR assembly macro for pcall
pcode and the pcode instruction pend is a macro for .dw 0.)

User-Supplied Pcode Opcodes - Users can add their own pcode opcodes, providing certain conventions are
followed. The following example shows “skeleton” code for a user-supplied pcode instruction called mypcode that
takes three operands:

 mypcode: pcode_routine 3
 ;
 ; (user-supplied code goes here)
 ;
 ret ; return to pcode interpreter

The first line of this sample routine tells the PicoWeb development system that mypcode is a new, legal pcode
instruction which requires exactly three operands.

Note that when invoked by the pcode interpreter, the pcode instruction’s three 16-bit operands are supplied to the
user-supplied assembly language routine in registers r10-r11, r12-r13 and r14-r15 respectively. These operands will

Copyright 1999 by Lightner Engineering Page 2

have been previously “de-referenced” by the pcode interpreter as indicated by the various operand word control bits
(i.e., optional indirect addressing of words/bytes, byte swap, etc.).

A user-supplied pcode opcode assembly routine is free to use the processor registers r0-r1, r10-r17, x, y, and z. Any
other processor registers need to be saved and restored before exiting the user’s routine. A user-supplied pcode
opcode routine cannot depend upon any of the processor registers being preserved from one pcode opcode routine
execution to the next. If a user-supplied pcode opcode routine needs to preserve state between opcode invocations,
then the microcontroller SRAM must be used to save this state.

A user-supplied pcode routine can access to the pcode virtual machine’s pcode flags register. The format of the
pcode flags register is identical to the AVR microcontroller’s flags register. A user-supplied pcode routine can copy
the pcode flags register into the AVR flags register with the assembly language instruction “rcall
get_pcode_flags”. The current state of the AVR flags register can be copied into the pcode flags register with
the assembly language instruction “rcall set_pcode_flags”.

Pcode Instruction Memory Format – Pcode source instructions are pre-processed by the PicoWeb development
environment and converted into a series of AVR assembler .dw pseudo-ops. Each pcode instruction generates a
single 16-bit pcode opcode word followed by zero or more 16-bit pcode operand words. The bottom 12 bits of the
opcode word are the address of the native execution routine. The uppermost bit of the opcode word is an "extended
addressing" flag. If this bit is set, extended addressing is enabled, otherwise it is disabled. Extended addressing
controls how the operand words are interpreted. When extended addressing is disabled, all operand words are
considered "immediate" operands. When extended addressing is enabled, the uppermost three bits in each operand
word specify which extended addressing mode(s) are to be applied, with the lower 13 bits of the operand treated as
an address.

Pcode Opcode Word Format
Opcode Word Format 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Extended addressing enabled 1 0 0 0 A A A A A A A A A A A A
Extended addressing disabled 0 0 0 0 A A A A A A A A A A A A

AAAAAAAAAAAA = address of pcode routine in on-chip or external EEPROM memory

Pcode Operand Word Format
Operand Word Format 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 I I I I I I I I I I I I I I I
Extended addressing enabled

X W S A A A A A A A A A A A A A
Extended addressing disabled I I I I I I I I I I I I I I I I

IIIIIIIIIIIIIIII = immediate data value
AAAAAAAAAAAAA = address of pcode routine in on-chip or external EEPROM memory
W = 0: fetch 16-bit data word at address AAAAAAAAAAAAA (indirect word addressing)
W = 1: fetch 8-bit data byte at address AAAAAAAAAAAAA (indirect byte addressing)
S = 0: do nothing after fetching data
S = 1: swap high/low bytes after fetching data

A pcode opcode word of all zeros (.dw 0) will cause the pcode interpreter to exit and jump to the first AVR
assembly language instruction after the zero word. (The pcode opcode pend is defined to have all 16 opcode word
bits set to zero.)

Copyright 1999 by Lightner Engineering Page 3

PicoWeb Pcode Example

The following example is a pcode routine called decconv which converts a passed 16-bit signed integer value into
ASCII digits, then outputs that text (to the serial port or to the Ethernet) using the pcode I/O opcode pputcb. This
“pure pcode” routine uses 11 bytes of SRAM starting at the label buf to perform its work. It can be called from
pcode as in the following pcode example, which will output the string “-12345”:

pmovwi buf,-12345
pcall decconv

The routine decconv can be placed in the AVR microprocessor’s on-chip program memory, or it can be placed in
the PicoWeb server’s external serial EEPROM memory. Execution speed is much slower from the external
SEEPROM memory because in that case the opcode and operand words must be fetched serially as they are
executed (i.e., one bit at a time at the rate of ~400 Kbits/sec over the I2C bus).

;
; decconv – integer to decimal converter
;
; inputs:
; buf = 16-bit signed integer to convert
;
; outputs:
; ASCII value, printed with pputc
;
; method:
; repeatedly divide input by 10 until quotient is 0, using the remainder
; to make ASCII digits. The ASCII digits are buffered, then output at
; end in reverse order. Negative inputs get a leading '-' sign.
;
; caveats:
; MUST be called with a pcall!!
; Destroys SRAM locations buf through buf+10
;
#define DEC_VAL buf ; word to convert (destroyed!)
#define DEC_REM buf+2 ; remainder from divide op
#define DIG_PTR buf+4 ; text buffer pointer
#define DIG_BUF buf+6 ; text buffer (5 bytes max.)

decconv:
 pmovwi DIG_PTR,DIG_BUF ; initialize pointer to DIG_BUF
 pbitwi DEC_VAL,0x8000 ; what's the sign of input?
 pjumpeq decconv1 ; positive...start conversion
 pnegw DEC_VAL ; negative...negate input word
 pputc '-' ; output leading minus sign
decconv1:
 pdiv DEC_VAL,[DEC_VAL],10 ; do next digit (divide by 10)
 paddwi DEC_REM,'0' ; convert digit for display
 pmovbi [DIG_PTR],[byte DEC_REM] ; save ASCII digit
 pincw DIG_PTR ; bump past digit just stored
 psubwi DEC_VAL,0 ; test remaining value
 pjumpne decconv1 ; more to convert if non-zero
decconv2:
 pdecw DIG_PTR ; point to next digit to output
 pputcb [byte DIG_PTR] ; output ASCII digit
 pcmpwi DIG_PTR,DIG_BUF ; are we back to the beginning?
 pjumpne decconv2 ; nope...do another digit
 pret ; yes...return to caller

Preprocessor #define statements are used in the example to make the source code more readable. These
#define statements call out SRAM locations in the PicoWeb server’s general purpose “scratch” buffer buf.

Copyright 1999 by Lightner Engineering Page 4

Note the use of square brackets ([]) on three of the sample pcode instruction lines indicating “indirect addressing”.
For example, the pmovbi pcode opcode (move byte) expects a destination memory address as its first operand and
an immediate value as its second operand. In the example, the destination address is specified as [DIG_PTR], an
indirect addressing form, which tells the pcode interpreter to instead use DIG_PTR as a pointer to the “real” target
byte address. The routine increments DIG_PTR as it converts digits, allowing the ASCII digits to be stored
sequentially starting at memory location DIG_BUF.

On the same sample pcode pmovbi instruction line, the second operand normally supplies an immediate source
byte. However, in the example, this operand is specified as [byte DEC_REM], a more complex indirect
addressing mode, which tells the pcode interpreter to fetch the byte stored at memory location DEC_REM, instead of
simply taking the immediate value supplied as the second pcode operand. If the second operand was specified as
simply “DEC_REM”, then the pcode instruction would (incorrectly) repeatedly store the low byte of the literal
address DEC_REM!

Copyright 1999 by Lightner Engineering Page 5

PicoWeb Pcode Instruction Definitions (v1.36)

All pcode instructions take one of the following forms:

opcode
opcode p1
opcode p1,p2
opcode p1,p2,p3

where:

opcode pcode opcode listed in one of the PicoWeb pcode instruction tables
p1-p3 pcode operand (p1, p2, p3) shown in the PicoWeb pcode instruction tables

All pcode operands (p1, p2, p3) may be expressed in one of seven different forms, one normal form, three different
indirect forms, and three different string literal forms, as follows:

p effective operand is 16-bit value p (normal form)
[p] effective operand is 16-bit word stored beginning at SRAM address p
[byte p] effective operand is 8-bit byte stored at SRAM address p
[swap p] effective operand is 16-bit word at SRAM address p with high/low bytes swapped
“...” effective operand is address of character string (“...”) in the current code segment (.cseg or

.eseg)
cseg “...” effective operand is address of character string (“...”) in program memory (.cseg)
eseg “...” effective operand is address of character string (“...”) in external SEEPROM memory (.eseg)

Warning: If any of the indirect operand forms are used in a given pcode instruction instance, then the size of any
(and all) immediate (i.e., imm operands) operands used in that pcode instruction instance is reduced from 16 bits to
14 bits.

Notes regarding the PicoWeb pcode tables which follow:

• a indicates an SRAM address
• ∗a indicates the 16-bit word starting at SRAM byte address a
• a[n] indicates the contents of the SRAM byte at address (a + n)
• eeprom[e] indicates the contents of the on-chip EEPROM byte at address e
• seeprom[e] indicates the contents of the external serial EEPROM byte at address e
• imm is an immediate 16-bit word value
• ppc signifies the pcode program counter
• s signifies the start address of a zero-terminated string in on-chip flash memory or external SEEPROM

memory
• addr signifies the address of a pcode opcode (in on-chip flash or external serial EEPROM memory)
• The pcode flags (Z, C, N) shown in the “Flags” column are separate from the AVR processor flags
• Z is the pcode zero flag
• C is the pcode carry flag
• N is the pcode negative flag (i.e., sign bit)
• low(x) indicates the low 8 bits of a 16-bit word value x
• swap(a) indicates an exchange of the low and high bytes of a 16-bit word a

Copyright 1999 by Lightner Engineering Page 6

PicoWeb Pcode General Purpose Instructions

Opcode p1 p2 p3 Description Operation Flags
paddwi a imm Add immediate to word ∗a ← ∗a + imm Z,C,N

pandwi a imm Logical AND word immediate ∗a ← ∗a & imm Z,N

pbegin Begin executing pcode rcall pcode
pbitwi a imm Bit test word immediate. ∗a & imm Z
pcall addr Call pcode routine push ppc onto pcode return stack; ppc ← addr
pclrw a Clear word ∗a ← 0
pcmpbi a imm Compare byte immediate a[0] - low(imm) Z,C,N

pcmpn a b n Compare two buffers in SRAM for (i=0; i<n; ++i) a[i] - b[i]; Z

pcmpwi a b Compare word immediate. ∗a - imm Z,C,N

pcomw a Ones complement word. ∗a ← 0xFFFF - ∗a Z,C,N
pdecw a Decrement word ∗a ← ∗a - 1 Z,C,N
pdiv a b c Unsigned 16-bit divide, 32-bit

result
∗a = ∗b / ∗c;
∗(a+2) = ∗b % ∗c;

pee2s a e n Copy bytes from EEPROM to
SRAM

for (i=0; i<n; ++i) a[i] ← eeprom[e + n];

pend Stop executing pcode .dw 0
pincw a Increment word ∗a ← ∗a + 1 Z,C,N
pjump addr Unconditional jump within pcode ppc ← addr
pjumpeq addr Jump within pcode if equal if (Z == 1) ppc ← addr
pjumphis addr Jump within pcode if higher/same if (C == 0) ppc ← addr
pjumplo addr Jump within pcode if lower if (C == 1) ppc ← addr
pjumpne addr Jump within pcode if not equal if (Z == 0) ppc ← addr
pmemcpy a b n SRAM memory copy for (i=0; i<n; ++i) a[i] ← b[i];
pmovb a b Move byte a[0] ← b[0]
pmovbi a imm Move byte immediate a[0] ← low(imm)
pmovwi a imm Move word immediate *a ← imm
pmul a b c Unsigned 16-bit multiply, 32-bit

result
*a ← (*b × *c) & 0xFFFF;
*(a+2) ← (*b × ∗c) >> 16

pnegw a Two’s complement word ∗a ← 0 - ∗a Z,C,N
porwi a imm Logical OR word immediate ∗a ← ∗a | imm Z,N

ppopn a n Pop n bytes from stack for (i=n-1; i>=0; --i) pop(a+i);
ppopw a Pop word from stack pop(a+1); pop(a);
ppushn a n Push n bytes onto stack for (i=0; i<n; ++i) push(a[i])
ppushwi imm Push immediate word onto stack push(low(imm)); push(high(imm))
pret Return from pcode routine ppc ← pop pcode return stack
ps2ee e a n Copy bytes from SRAM to

EEPROM
for (i=0; i<n; ++i) eeprom[e + n] ← a[i];

ps2see e a n Copy bytes from SRAM to ext.
SEEPROM

for (i=0; i<n; ++i) seeprom[e + n] ← a[i];

psee2s a e n Copy bytes from ext. SEEPROM to
SRAM

for (i=0; i<n; ++i) a[i] ← seeprom[e + n];

pshnw a n Logical shift 16-bit word n bits if (n > 0) ∗a ← (∗a << low(n))
else ∗a ← (∗a >> low(n));

Z,C,N

psubwi a imm Subtract word immediate ∗a ← ∗a - imm Z,C,N

pwdr Watchdog timer reset wdr
pwreebi e imm Write byte to EEPROM eeprom(e) ← low(imm)
pwrseebi e imm Write byte to ext. SEEPROM seeprom(e) ← low(imm)
pxorwi a imm Exclusive OR word immediate ∗a ← ∗a ^ imm, set flags with low(∗a) Z,N

Notes:

• push(x) means push byte x to top of AVR stack and pop(a) means pop top byte from AVR stack into SRAM address a.
• A pcode transfer of control instruction (e.g., pcall, pjump, etc.) must have as its target address another pcode instruction. Transfering control

from pcode directly to AVR assembly language will produce unpredictable results!
• Pcode must be entered from AVR assembly language using a pbegin instruction. Return to AVR assembly language must be done using a

pend instruction. Unpredictable results can be expected if these rules are not followed!

Copyright 1999 by Lightner Engineering Page 7

PicoWeb Pcode Input/Output Instructions

Opcode p1 p2 p3 Description Operation Flags
pcrlf Print CR,LF printf(“\r\n”)
phexbi a Print hex byte immediate printf(“%02x”, (a & 0xFF))
pprint s Print string printf(“%s”, a)
pprintb s a n Print bytes in hex with string if (s != 0) printf(“%s”, s);

for (i=0; i<n; ++i) printf(“%02x“, a[i]);
pprintv s imm Print string with 16-bit hex value if (s != 0) printf(“%s”, s) else putchar(‘ ‘);

printf(“%04x”, imm);
pputc imm Print character immediate putchar(imm & 0xFF);
pputcb a Print character putchar(a[0] & 0xFF);
pser_getc a Check/get serial port character if (character ready) a ← getchar(), Z = 0

else Z = 1;
Z

pser_mode bin Flush and set serial port mode Flush any buffered characters, then if (bin = 0)
set normal mode; else set pass-all (binary) mode

pser_putc imm Write immediate byte to serial port Wait for a "transmit done" indication on serial
port, then write low(imm) to UART

pspace Print a space putchar(‘ ‘)

Notes:

• The operation putchar(ch) behaves as follows: If (putc_b == 0), the byte ch is written to serial port,. If (putc_b ≠ 0), the byte ch is sent to
transmit stream or stored in holding buffer pending flush of transmit buffer.

• The operation printf() behaves identically as the previously described putchar() operation

PicoWeb Pcode Network Instructions

Opcode p1 p2 p3 Description Operation Flags
paddn a b n Add n-byte integers (network byte

ordering)
CF = 0; for (i=low(n)/2-1; i≠0; i-=1) ∗(a+2*i) ←
swap(swap(∗(a+2*i)) + swap(∗(b+2*i)) + CF);

pf2x off func n Output bytes to Ethernet transmit
buffer starting at byte off, with
network checksum accumulation
into “chkacc”

for (i=0; i<n; i+=2) Xmit[off + i] ← func();
where func returns 16-bit word in X register to be
stored. A 16-bit network checksum is also
accumulated into “chkacc”.

pi2x off imm Output immediate 16-bit word to
Ethernet transmit buffer at byte off

Xmit[off] ← imm

pprinta s eadd n Print bytes from Ethernet receive
buffer with label

if (s != 0) printf(“%s=”, s);
for (i=0; i<n; ++i) putchar(Recv[eadd + i]);

pprintr s off n Print words in hex from current
receive buffer with label

if (s != 0) printf(“%s=”, s); for (i=0; i<2*n; ++i)
printf(“%02x”, Recv[off + i]);

pprintt s off n Print words in hex from current
transmit buffer with label

if (s != 0) printf(“%s=”, s); for (i=0; i<2*n; ++i)
printf(“%02x”, Xmit[off + i]);

pr2f func off n Move bytes from current Ethernet
receive buffer to memory

for (i=0; i<n; i+=2) func(x); where func is called
with a 16-bit word in i0 and i1 (i0=Recv[off + i]
and i1=Recv[off + i + 1])

pr2s a off n Move bytes from current Ethernet
receive buffer to memory

for (i=0; i<n; ++i) a[i] ← Recv[off + i];

pr2x off1 off2 n Move bytes from current Ethernet
receive buffer to Ethernet transmit
buffer.

for (i=0; i<n; ++i) Xmit[off1 + i] ← Recv[off2 +
i];

ps2x off a n Move bytes from memory to
Ethernet transmit buffer

for (i=0; i<n; ++i) Xmit[off + i] ← a[i];

px2s a off n Move bytes from Ethernet transmit
buffer to memory

for (i=0; i<n; ++i) a[i] ← Xmit[off + i];

pz2x off n Write n bytes of zero to transmit
buffer

for (i=0; i<n; ++i) Xmit[off + i] ← 0;

Notes:

• Xmit[0] is the first byte of the Ethernet transmit buffer and Recv[0] is the first byte of the Ethernet receive buffer. Both point to the first byte
of the Ethernet MAC address in the respective buffer (i.e., any NIC-specific header bytes are skipped).

• The operation printf() behaves identically as the previously described putchar() operation
05/01/00 11:32 AM

