
CIRCUIT CELLAR ® ONLINE August 2000 1www.circuitcellar.com/online

Look Ma, No PC!

FEATURE
ARTICLE

i
If these guys caught
your attention with
their “$25 Web
Server” article in
Circuit Cellar Online, (July)
then you won’t want
to miss their latest
project. Read the ar-
ticle, get the materials,
build the project,
smile for the picture.
It’s that easy.

f you think that
it’s impossible to

build a full-function
web camera that in-

cludes the camera, web server, net-
work interface, and software for under
$55, keep reading!

There has been a battle brewing
at the low end of network interface
products for embedded applications.
It seems that everyone is interested
in getting their equipment hooked
up and online as a network appli-
ance. Until recently this was an
expensive proposition requiring PCs,
network interface cards, HTTP
server software, and TCP/IP protocol
stacks.

If you have a simple application
that would benefit from Internet ac-
cessibility, such as providing a tem-
perature reading, buying a PC and the
necessary network software for such
an application is probably out of the
question. However, cheaper alterna-
tives are available.

CHEAP WEB SERVERS
Early approaches to cutting the size

and cost of embedded network con-
trollers involved using single-board
PCs (e.g., based on the 80188 or
’386EX). These are still reasonable
solutions if your task requires a fair
amount of computational effort. How-
ever, the cost of these solutions is
generally well over $150. There are
now several special-purpose chips
that supply the network interface
protocols required to hook up your
favorite micro to the Internet.

For example, Hewlett-Packard has
the Bfoot-10501 chip. It has a serial
port to attach to your external device,
and a 10BaseT Ethernet interface to
connect everything to the ’Net. HP’s
offering includes a web server, allow-
ing a web browser to control and
monitor your device. The HP device is
relatively expensive ($240 in small
quantities), but it’s unlikely to be cost
effective until your quantities are high.

Something like the emWare sys-
tem allows many small devices to be
connected to a serial network for the
purposes of web access. However
emWare’s solution still requires a PC
to provide a gateway to your local
area network (LAN) and the Internet.

Another alternative is dial-up
Internet access. ConnectOne, Scenix,
and Epson have chips that can connect
to the Internet via a modem (or termi-
nal server). But, if you need a direct
connection to your LAN, need high-
speed access to your device, or can’t
afford modems (or terminal servers) at
both ends of your connection, these
solutions are probably unacceptable.

A more cost-effective way of pro-
viding a web-based network interface
with a direct connection to your LAN
is the PicoWeb server ($79). This is a
complete solution that provides a
TCP/IP stack, an HTTP web server,
and a 10BaseT Ethernet connection
for your device. The PicoWeb server

Steve Freyder, David Helland,
& Bruce Lightner

A $55 Webcam

2 August 2000 CIRCUIT CELLAR ® ONLINE www.circuitcellar.com/online

can stand alone as a web server with-
out the need to interface to another
microprocessor, or in many cases, to
even write software. Right out of the
box you can load your HTML code
and images, plug the device into the
LAN, and use your web browser to
display web pages from the device.

The PicoWeb project was started by
a group of friends who wanted to
settle an argument about whether or
not a single chip microprocessor could
really deliver web pages. The result
was an article demonstrating how to
build “A $25 Web Server” in Circuit
Cellar Online 1 (July, 1999) using a $6
Atmel microcontroller and a $9 PC
ISA-bus network card, complete with
all the necessary firmware and devel-
opment system software.

Lightner Engineering’s PicoWeb
server is a commercial product
spawned by that project. Even though
the PicoWeb’s microcontroller has
only 8 KB of program memory and
512 bytes of RAM, it effectively deliv-
ers web pages and more. A 16-KB
serial EEPROM chip adds storage for
graphic images, HTML, and CGI pro-
grams. A built-in UART and about 16
unused general-purpose digital I/O
lines provide the facilities to connect
the PicoWeb server to
a wide variety of user
devices. Many project
examples and the
entire software devel-
opment tool set can be
found at the PicoWeb

site (www.picoweb.net).
This article will show

the power of the
PicoWeb server by at-
taching it to a serial
device (an inexpensive
digital camera) and how
to program the PicoWeb
to acquire pictures from
the camera so they can
be transferred to a web
browser for display. This
project will work on

both the $25 “homegrown” version of
the PicoWeb server and the commer-
cial version.

HARDWARE DESIGN
The project demonstrates how to

make an inexpensive, low-power,
low- cost web camera with off-the-
shelf parts as shown in Figure 1. No
PC is needed to provide the web server
functions and Internet interface. All
functionality is provided by a tiny 8-bit
Atmel microprocessor as part of the
PicoWeb server.

The camera used in this project is a
toy camera sold by Mattel as either
the Barbie Photo Designer ($59) or the
Nick Click ($29) digital camera. If you
like pink and have money to burn, go
for the Barbie camera. If you are cheap
(like us) and don’t mind a purple cam-
era, buy the Nick Click.

Both cameras are low-resolution
(160 × 120) CMOS-based color digital
cameras with RS-232 serial interfaces.
Both come with noisy software that
allows the pictures to be integrated
with Barbie or Nickelodeon cartoon
characters into a variety of output
formats. (Turn off your PC speakers if
you check these out at work!)

PICKING A CAMERA
Choosing a digital camera was

critical because of the limited code
space in the PicoWeb’s microcontrol-
ler. Remember, we are dealing with
8 KB of program memory in an Atmel
AT90S8515 microprocessor and it is
already providing support for ARP,
BOOTP, PING, UDP, TCP/IP, and
HTTP web server functions. (That’s
right, only 8 KB of flash memory and
512 bytes of RAM.) So, our require-
ments call for a simple camera inter-
face compatible with the PicoWeb’s
available message formats.

The first cameras we examined
were the many parallel port cameras
that are widely available for adding
video to your PC. At first glance,
these looked perfect: small, cheap,
simple interface, some with interface
protocol information, including driver
source code (typically Linux). How-
ever, a closer look at the available
protocols revealed that they are not
simple to handle in firmware. These
devices look more like raw video
cameras than true digital cameras
(e.g., the Quickcam by US Robotics).
The firmware must set all the camera
chip registers and make real-time
adjustments for light levels. Some
cameras require you to detect start of
frame and beginning of scan line in
the raw video stream.

We found web sites that were use-
ful in evaluating these cameras, in-
cluding “QuickCam Third-Party
Drivers” and the “CpiA Webcam
driver for Linux” (see Sources).

Another approach would have been
to use an NTSC video camera and then
capture the video image with a video
capture device such as Play Inc.’s Play
Snappy Video Snapshot 4.0. This de-
vice has a parallel port interface but
the source code for the interface driv-
ers wasn’t readily available. The cost
of this route was going to be over $250
for the two devices, and multiple
power supplies would be required.

Yet another alter-
native is one of the
high-end digital
cameras being sold
as alternatives to
film cameras. In fact,
source code is avail-

Barbie photo designer camera

VV6301
image sensor

8-bit
microprocessor

RAM
image

storage

IR
filter Lens

Computer with
JAVA-enabled

browser

Local
Internet

connection

The Internet

CLK

SDA SCL FST

PicoWeb
server 10 BaseT Internet connection

8-bit data

RS-232 camera interface

Figure 1 —A toy camera is com-
bined with a tiny web server to give
you an inexpensive webcam that
can be accessed from anywhere on
the Internet.

Command Char Param Description

Set image index ‘A’ index Set current image index to one of 6 images
Take a picture ‘G’ delay Take photo and store as current image
Upload a picture ‘U’ 0 Send current image to RS-232 port

Table 1—These are the only commands we needed to turn our Mattel fun camera into a webcam.

CIRCUIT CELLAR ® ONLINE August 2000 3www.circuitcellar.com/online

Photo diode array

Vertical
shift

register

Digital
control
logic

CLKI

Analog
voltage

refs.

A/D converter

Image
format

Horizontal shift register

Clock
circuit

SDA

Sample and hold

SCL

CLKO
D[7:0]

QCK

FST

SIN

Figure 2 —The STM VV6301 gives you everything you need to make a digital camera on one chip,
including a full-color CMOS sensor array.

able for controlling many high-end
digital cameras, several of which de-
liver JPEG images via RS-232 serial
ports.

Open-source “freeware” offered by
Eugene Crosser (and Bruce Lightner)
can be used to download JPEG images
from the serial interfaces of many
Agfa, Epson, Olympus, Sanyo, and
Nikon camera models. (Full source
code is available at www.average.org/
digicam.) However, the cost of these
cameras ($300 and up) and the com-
plexity of their serial protocols elimi-
nated them from the quick, simple,
and inexpensive webcam project we
had in mind. (see photo 2)

CHEAP CMOS CAMERAS
Finally there are several inexpen-

sive digital cameras on the market.
These are low-resolution color cam-
eras (160 × 120 pixels) with serial port
interfaces that are generally sold as
fun cameras for children. The manu-
facturers include Oregon Scientific
(DS3838), Polaroid (FUN 320), and
Mattel (Barbie Photo Designer and Nick
Click). The two cameras from Mattel
appear to have identical electronics
inside. These cameras all seem to be
based on the VVL300 digital output
sensor from STMicroelectronics (for-
merly VLSI Vision Ltd. of Scotland).

The camera chip
used in the Mattel
digital cameras is the
STMicroelectronics’
VV6301, a highly inte-
grated color camera
sensor. A block dia-
gram of this chip is
shown in Figure 2.
These chips use a
CMOS imaging device
rather than the typical
charge-coupled device
(CCD) sensor. The
advantage of CMOS-
based sensors is that a
single silicon process
can be used to manu-
facture the chip and all
its ancillary logic.
Therefore, most of the
elements necessary to
make a camera can be
collocated on a single

die, and manufactured inexpensively.
On the other hand, CCD-based

cameras require multiple ICs and typi-
cally multiple voltages for the different
IC technologies involved. The claim is
that a single-chip CMOS-based imager
has lower noise as a result of internal
parts that are in close proximity, plus
on-board regulators that allow opera-
tion from a single 5-V supply. The
VV6301 sensor also provides auto-
matic black-level calibration and
includes a simple 2-wire I2C interface
for connection to a microprocessor.

All you need to make a complete
camera is a lens, memory for image
storage, and a microprocessor to pro-
vide the desired camera functionality.
The Mattel cameras use an Intel MCS
51-family microprocessor and static
RAM for image storage.

One difference between a fun cam-
era and a high-end digital camera is
that the former depends on a PC to
convert the raw pixel data into some-
thing useful (e.g., a JPEG image), and
the latter does this inside the camera.
Typically, there is no image compres-
sion done in the fun cameras. You
only get uncompressed, raw image
sensor data out the serial port. As you
will see, raw pixel data needs a bit of
processing to yield an image that can
be viewed on a web page.

Mattel’s cameras send a total of
20 KB of raw pixel data per photo.
When converted into a compressed
JPEG image, this same photo is typi-
cally only one-tenth this size.

There was no question that we
couldn’t do any useful image process-
ing in the PicoWeb’s tiny micro-
controller. However, we still had a
trick up our sleeves!

PICOWEB SERVER HARDWARE
The PicoWeb server uses the

Atmel AT90S8515 microprocessor
because the architecture is quite
sophisticated for a processor of this
size and cost. All of the registers are
directly available (not mapped, as in
the 8051) and the memory address
space is linear (not segmented into
pages, as in the PIC).

The AT90S8515 is a low-power
RISC processor with 8 KB of flash
program memory, 512 bytes of
EEPROM, 512 bytes of RAM, 32 I/O
lines, and a built-in UART. With an
execution rate of one instruction per
clock and a clock rate of 8 MHz, the
AT90S8515 can drive the PicoWeb’s
10BaseT Ethernet controller’s I/O bus
at 1 MBps. The PicoWeb server in-
cludes a 16-KB serial EEPROM chip
to hold things like GIF and JPEG
images as well as things like HTML,

text files, and Java
byte-codes. You can
see a photo of the
commercial version
of the PicoWeb server
in our “$25 Web
Server” article. The
schematic for this
version of the
PicoWeb server can
be found in Figure 3.

The PicoWeb’s
Ethernet controller is
a Realtek
RTL8019AS, a single-
chip NE2000-compat-
ible device with 16 KB
of on-chip packet
buffer RAM. This
chip only needs a
transformer, a single
resistor, and a few
capacitors to imple-
ment a complete

4 August 2000 CIRCUIT CELLAR ® ONLINE www.circuitcellar.com/online

10BaseT Ethernet network connec-
tion. The PicoWeb’s DB-25 connector
has up to 16 free general-purpose digi-
tal I/O lines, an RS-232 serial port,
and an in-circuit flash-memory pro-
gramming port. An onboard voltage
regulator accepts either AC or DC
power in the range of 7 to 25 V . Typi-
cal current consumption is under
30 mA from the 5-V DC supply.

An NE2000 Ethernet chip is opti-
mal because the Atmel processor
memory is limited. The NE2000 con-
troller has 16 KB of onboard SRAM
that functions as a ring buffer to allow
unattended reception of back-to-back
Ethernet packets. (Because the com-
mercial version of the PicoWeb server
operates the Realtek chip in 8-bit mode,
the available buffer RAM is reduced to
8 KB.) The same onboard Ethernet con-
troller SRAM can be used to assemble
transmitted Ethernet packets. The
result is that the Atmel
micro-controller’s meager 512 bytes of
on-chip SRAM is not needed to send or
receive the maximum-sized 1500-byte
Ethernet packets.

Connecting the camera to the Pico-
Web server is simple, as Figure 4 illus-
trates. The data connection to the
camera is a mini-stereo jack. The cable
that comes with the camera (not used
in our application) has this jack on one
end with three wires (TX, RX, GND)
that connect to a PC-compatible DE-
9S serial connector on the other end.

A 9-V battery normally powers the
camera, supplying a 5-VDC regulator
chip inside the camera. We disas-
sembled our camera and drilled a hole

to add a power plug so we could power
it off of the same unregulated 9-VDC
supply as the PicoWeb. The
PicoWeb’s unregulated DC is avail-
able on a pin in its DB-25 connector.
The camera only draws 70 mA from
this connection. (We tried powering
the camera’s logic board directly from
the PicoWeb’s regulated 5-VDC power
supply, but the camera kept warning
us about its “low” (missing) 9-V bat-
tery!)

The images stored in the camera
are located in its RAM, so removing
the battery or disconnecting the DC
cable from the PicoWeb will result in
the loss of any stored images. To keep
the camera from turning itself off to
save its (now missing) 9-V battery, we
programmed the PicoWeb to probe the
camera over the serial port, about once
per second. Modifying the standard
PicoWeb clock frequency (from 8 MHz
to 7.372 MHz) derived the 57.6-kbps
rate needed by the camera.

FIRMWARE FUNCTIONS
The basic function of the PicoWeb

server is to allow embedded applica-
tions to display their data on the
world wide web via its Ethernet con-
nection. To accomplish this, the
PicoWeb server’s standard firmware
supports a simple kernel, an optional
tiny debug monitor, a “p-code” inter-
preter, a network adapter driver, a
TCP/IP protocol stack, and an HTTP
server (i.e., web server). The network
protocols that the PicoWeb server’s
firmware supports include:

 • ARP—The PicoWeb server re-

sponds to network ARP re-
quests to allow other comput-
ers to make an association
between the PicoWeb server’s
assigned IP Address and its
unique Ethernet address.

• BOOTP—The PicoWeb’s IP
address can be assigned stati-
cally, by storing the IP address
in the microcontroller’s flash
EEPROM, or dynamically, by
using the BOOTP protocol.

• PING—The PicoWeb server also
responds to ICMP Echo Re-
quests to allow you to quickly
test network connectivity.

• UDP—The PicoWeb server can
send and receive UDP packets.

• TCP/IP—At the TCP/IP level,
the PicoWeb server responds to
HTTP GET requests that are
addressed to TCP port 80. The
web server responds to these
requests by sending back
HTML documents, text, and
images. In addition, user-sup-
plied firmware can make use of
the PicoWeb’s TCP/IP stack for
other purposes.

The firmware kernel in the
PicoWeb server provides all the code
necessary to implement the needed
parts of the Internet protocols listed
above. In addition, the supplied soft-
ware and firmware include tools to
assist you in developing new web
pages and adding program code to com-
municate via the external I/O devices.

The PicoWeb server allows both
JavaScript (either embedded in HTML
code or as separate files) and Java
applets (i.e., Java byte-codes) to be
stored in its serial EEPROM, along
with HTML code and images. Java and
JavaScript are potent tools that allow
software routines that would other-
wise be too large or too complex to be
run by the Atmel microcontroller to
be executed by the your web browser
in a transparent way.

The PicoWeb’s firmware suite
contains an optional simple, exten-
sible debugger that provides for things
such as memory dumps, SRAM, and
EEPROM memory alteration, “p-
code” and network tracing control,
and so on. Debugger commands can

Photo 1 —The web page shows a photo that was
captured by a Mattel Nick Click digital camera
attached to a PicoWeb server’s RS-232 serial port.
Raw data from the CMOS-based 164 × 120 pixel
sensor array are read into a Java applet (supplied by
the PicoWeb server) and then converted into a
viewable image. The raw pixels are in a 2 × 2 red-
green-blue-green Bayer array. The Java applet uses
nearest-neighbor bilinear interpolation to provide a
full-color image from the raw pixel array. The resulting
image is focus using a convolution function before
display.

CIRCUIT CELLAR ® ONLINE August 2000 5www.circuitcellar.com/online

tween our camera and the PC. The
transfer rate was 57.6 kbps at 8 bits
with no parity. A program was written
for a PC in Borland C to further clarify
the camera’s communication protocol.

The command format for control-
ling the camera turned out to be
simple. The commands are single
uppercase characters followed by an
optional parameter. The command and
parameter characters are preceded by
an STX (0x02) and followed by an ETX
(0x03). The camera responds to each
command sequence sent to it with
either an ACK (0x06) or a NAK (0x15).
If a response to a command is war-
ranted, the response data from the
camera is preceded by an STX (0x02)
and terminated by an ETX (0x03).

The camera typically responds by
echoing the four-character command
sequence, after changing the com-
mand character to lowercase and re-
placing the parameter with a status/
error code. Table 1 shows the camera
commands utilized in this project.

Because we are interested in only the
first picture, we must send a command
to set the image index to zero before
taking a picture and also before upload-
ing a picture. The command sequence
to take a picture and upload it to the
serial port is shown in Table 2.

Note that the returned image data
is sent in a continuous stream with-
out any flow control. It takes about
4 s to transfer the full 20,680 bytes of
image data. This means that the
PicoWeb must receive, buffer, and
transmit data to the open TCP/IP
socket without dropping any of the
incoming 57.6-kbps characters.

A prime design goal of the

PicoWebCam was to make it work
like other web cameras. That meant
that accessing a web site (in this case,
the home page of the PicoWeb server)
would simply cause a photo from the
camera to be displayed. If the
PicoWeb server is accessible from the
Internet, then photos from the camera
can be viewed from anywhere in the
world. Nothing more should be
needed to make this work than a
Barbie camera, a PicoWeb server, and
our simple cable. No gateway or
helper PC should be required to pro-
duce images. Sounds like a problem
for a $6 microcontroller with 512 bytes
of RAM! But, with a little Java applet
programming, we can cleverly push all
of the hard stuff onto the web browser’s
host computer.

The first step in making all this
happen is storing an HTML page in
the PicoWeb server’s serial EEPROM
memory. This HTML code is returned
when the PicoWeb’s home page URL
is referenced (see Photo 1). This web
page references a Java applet stored in
the PicoWeb, which will give us a
graphics window in the web page in
which we later display the photos from
the camera.

The web browser then asks the
PicoWeb to deliver the referenced Java
applet (stored as Java byte-codes). The
applet is sent back to the browser,
which starts its Java interpreter and
begins executing the Java program.
The Java interpreter executing in the
browser then displays a graphics win-
dow controlled by the Java applet.

The Java applet then makes a
TCP/IP connection back to the Pico-
Web to retrieve special HTML pages
from the PicoWeb that contain em-
bedded CGI p-code routine refer-
ences. Retrieving these pages causes
the associated p-code routines to be
executed in the PicoWeb server. Ini-
tially, the PicoWeb server will be
commanded to retrieve the latest
photo from the camera. Note that
this is not a Java security violation
because a Java applet is allowed to
make network connections back to
the host computer that delivered the
applet.

In response to the request from the
Java applet, the PicoWeb server tells

Photo 3— The first image (a) shows the raw pixel data
from the camera (Bayer color pattern). This image is
processed by the PicoWebCam-supplied Java applet to
supply the “missing” pixels (b), then it is sharpened (c).
Believe it or not, when not enlarged, the sharpened
image looks better to most people.

a) b) c)

Photo 2 —The Nick Click camera is powered by the same
9-V supply as the PicoWeb. Plug this into your 10BaseT
LAN and you can snap and display the photos with your
favorite web browser.

be entered via the serial port, or via
the network using a web browser by
accessing a special TCP port.

The format of a debugger command
URL is http://IPaddress:911/com-
mand[[+parameter1]+parameter2].

Any results from executing a debug
command will be returned as a web
page. The supplied debugger com-
mands are described in detail in docu-
ments located on the PicoWeb web
site. New debugger commands can
easily be added r (or deleted to save
program code space).

The Atmel AVR AT90S8515 chip
includes hardware to allow the flash
memory and EEPROM to be pro-
grammed via a 3-wire SPI interface.
This capability is used by the Pico-
Web server to download the code into
the flash memory and modify the on-
chip EEPROM (e.g., for parameter
storage). Downloading is accom-
plished by using a simple cable at-
tached to the parallel port of a PC.

The PicoWeb server has firmware
routines that allow the 16-KB serial
EEPROM to be programmed remotely
via the Ethernet interface. A utility
program is provided that allows data,
graphic images, HTML, Java applets,
and p-code routines to be loaded into
the serial EEPROM memory. The
serial EEPROM segments are trans-
ferred over the network using a TCP-
based loader program. This feature
also allows the images and p-code
routines to be updated while the
PicoWeb server is active.

SOFTWARE DESIGN
The first step in the software design

was a little reverse-engineering. First,
we analyzed the RS-232 traffic be-

6 August 2000 CIRCUIT CELLAR ® ONLINE www.circuitcellar.com/online

the camera to stream the latest photo
over its serial port (i.e., upload com-
mand). The server sends this raw
pixel data back to the Java applet over
the open TCP/IP connection as a web
page. This takes about 4 s and is paced
by the speed of the 57.6-kbps serial
connection with the camera. One byte
of raw pixel data is sent for each pixel
in the 164 × 120 sensor array.

The Java applet running in the web
browser’s computer receives the raw
pixel data from the TCP/IP port and
then processes the raw data to turn it
into a displayable image. Next, the Java
applet displays the received image.

The Java applet then begins watch-
ing the mouse buttons. Using the
mouse, users can call for a new photo
to be taken by the camera and dis-
played, or they can call for the current
image to be resized or alter the image
processing options.

As you see, we have the Java applet
running on the user’s web browser
doing all of the things that are diffi-
cult or impossible for the PicoWeb
server to do. As long as your web
browser has Java enabled, you will be
blissfully unaware of what is really
going on behind the scenes.

PICOWEB FIRMWARE
Very little new PicoWeb server

code was required to implement this
project. Existing example projects for
controlling serial port devices were
used as a starting point for this
project. These are available at the
PicoWeb web site (www.picoweb.net/
downloads.html). All the code for the
PicoWebCam project (p-code, HTML,
Java) also can be downloaded from
the PicoWeb site.

The only new routines required for
this project were those needed to reset
the camera image counter, take a new
picture, and upload the raw pixel data.
These routines each consist of a few
lines of PicoWeb p-code language, a
kind of interpreted assembly language
for a 16-bit virtual machine. The p-
code interpreter was developed for the
PicoWeb server to provide program
code simplification and maximization
of code re-use, allow the option to ex-
ecute program code out of serial
EEPROM, and reduce program code size

Figure 3 —The commercial version of the $25 PicoWeb server uses a Realtek NE2000 Ethernet controller
chip instead of a PC ISA-bus NE2000 Ethernet card. Everything else remains the same.

CIRCUIT CELLAR ® ONLINE August 2000 7www.circuitcellar.com/online

as compared to native code.
More information about the Pico-

Web p-code interpreter and how to
write p-code for the PicoWeb server
can be found at the PicoWeb web site
in an article titled “PicoWeb P-code
Description.” The information neces-
sary to allow developers to design
their own PicoWeb projects also can
be found at the same web site in an
article titled “How to
Build a PicoWeb Project.”

JAVA APPLET
A Java applet was nec-

essary for this project be-
cause the image data
returned from the Barbie
Photo Designer camera
needs to be processed be-
fore it can be displayed.
The camera does not store
images in a format that can
be directly displayed by a
web browser (e.g., JPEG or
GIF images). Instead, the
camera sends raw image
data to the computer in the
form of a Bayer color pat-
tern. The Java code causes a
TCP/IP socket to be opened
by the web browser’s com-
puter to transfer the raw
picture data from the
PicoWeb server, and then
to process the data as nec-
essary into a viewable im-
age.

The raw pixels from the
camera come from a 2 × 2

red-green-blue-green Bayer array as
shown in Figure 5. Each pixel in the
image sensor chip is covered by a
colored filter according to the Bayer
pattern shown. There are two green
pixels for every red and every blue
pixel. We need to supply a red, green,
and blue pixel for every possible pixel
location in order to derive a real im-
age. If we don’t do this, we get a low-

resolution greenish image, as shown
in Photo 3a. We do this by looking at
like-colored pixels in the neighbor-
hood and making an intelligent guess
about the probable color and intensity
of the light that struck each pixel
when the photo was snapped. (Next
time you read about the latest full-
color digital camera with 2.1 mil-
lion pixels, remember that in some
sense, two-thirds of the pixel data is
made up!)

We have lots of pixel interpolation
algorithms to choose from, of varying
complexity, and with a wide range of
computational requirements. Our Java
applet executes a simple, fast nearest-
neighbor bilinear interpolation algo-
rithm to quickly provide a full-color
image from the raw pixel array. The
resulting image is then sharpened
using a convolution function before
display. This is something that
Mattel’s PC software does in order to
make their camera’s otherwise tiny
fuzzy photos look better. Photos 3b
and 3c show an enlargement of a
sample camera image after processing

by the PicoWebCam’s Java
applet.

An excellent discus-
sion of Bayer color pat-
tern processing
algorithms is titled “A
Study of Spatial Color
Interpolation Algorithms
for Single-Detector Digi-
tal Cameras,” by Ting
Chen. [1] The basic algo-
rithm for the image
sharpening was inspired
by an article titled “Image
Processing with Java 2D,”
by Bill Day and Jonathan
Knudsen. [2] The Java
compiler used for this
project was provided by
Sun Microsystems. A
complete, free Java pro-
gram development kit
(JAVATM 2 SDK, Stan-
dard Edition Version 1.3)
is available for download-
ing from Sun.

SMILE
We have established

that our PicoWebCam

2

8

1

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

7

6

5

4

3

P1

DB-25P
PicoWeb data

connector

Camera battery –

Camera battery +

GND

GND

TXD

RXD

9V DC

1

2

3

P2

Stereo plug
camera data

connector

GND

+9

Figure 4 —A simple 5-wire cable connects the PicoWeb server to the Mattel digital
camera. Adding a power connector to the camera’s body means the camera can be
powered from the same 9-VDC supply as the PicoWeb server.

1. Set the image index to zero:
STX + ‘A’ + 0x00 + ETX then wait for ACK followed by STX + ‘a’ + 0x00 + ETX

2. Take a picture with no timer delay:
STX + ‘G’ + 0x00 + ETX then wait for ACK followed by STX + ‘g’ + 0x00 + ETX

3. Set the image index to zero again:
STX + ‘A’ + 0x00 + ETX then wait for ACK followed by STX + ‘a’ + 0x00 + ETX

4. Upload the picture:
STX + ‘U’ + 0x00 + ETX then wait for ACK followed by the image datastream: STX + ‘u’ + N1 +

N2 + N3 + N4 + D1 + D2 + ... DN + ETX

where N1 = 164 (number of columns)
 N2 = 2 (number of black lines)
 N3 = 124 (number of visible lines)
 N4 = 16 (number of status bytes)
 D1 + D2 + ... DN are the data bytes of the image (20,680 bytes)

Table 2—This is the sequence of camera commands and responses needed to take a photo and then upload the
photo’s image data to the PicoWeb server.

8 August 2000 CIRCUIT CELLAR ® ONLINE www.circuitcellar.com/online

SOURCES
PicoWeb server
Lightner Engineering
www.picoweb.net

Digital camera software
QuickCam third-party drivers
www.crynwr.com/qcpc

CpiA webcam driver for Linux
 http://webcam.sourceforge.net

PhotoPC digital camera software
(open-source freeware)
www.average.org/digicam

VVL300 digital output sensor
STMicroelectronics
www.vvl.co.uk/products/
image_sensors

Java compiler
Java 2 SDK, Standard Edition Version 1
Sun Microsystems
http://java.sun.com/products/jdk/1.2/

REFERENCES
[1] T. Chen, “A Study of Spatial
Color Interpolation Algorithms
for Single-Detector Digital Cam-
eras,” www-ise.stanford.edu/
~tingchen/main.htm.

[2] B. Day and J. Knudsen, “Image
processing with Java 2D,”
JavaWorld, www.javaworld .com/
javaworld/jw-09-1998/jw-09-
media.html, September, 1998.

RESOURCE
S. Freyder, D. Helland, and B.

Lightner, “A $25 Web Server,”
Circuit Cellar Online, July, 1999,
www.chipcenter.com/
circuitcellar/july99/c79bl1.htm.

can be constructed for as little as $55
by first building our $25 web server
and then connecting it to a Nick
Click digital camera. Not surpris-
ingly, we think that for a few dollars
more, the commercial version of the
PicoWeb server is a better way to go.
In either case, you get a complete,
inexpensive, standalone web server
with attached web camera, all in a
tiny package. And the best part is no
PC is required!

Clearly, the resolution of the toy
cameras we used in the project is less
than optimal for many applications.
However, there are cost-sensitive
commercial applications that could
benefit from this project (e.g., a key-
pad entry system that records photos
of all entry attempts).

The fact that the camera takes
more than 4 s to send its image data
out its serial port means that the
frame rate of our PicoWebCam is
horrible. However, it doesn’t take a
propeller head to notice that the serial
port bottleneck can be removed from
the picture (no pun intended). In fact,
just like Mattel, you too can buy
CMOS imaging chips from
STMicroelectronics (STM), and for a
whole lot less than $29 each. All of
STM’s imaging chips that we looked
at have a high-speed parallel interface,
and evaluation boards sporting even
higher resolution imaging chips are
available from STM.

How about a PicoWebCam that
delivers photos at the speed of the
Ethernet! It’s all possible, and now
you’ve got all the information you
need to roll your own. I

Odd
columns

(0,2,4,6,...)

Even
rows

(1,3,5,7,...)

Odd
rows

(0,2,4,6,...)

Even
columns

(1,3,5,7,...)

Green 1

Blue

Red

Green 2

Figure 5 —This is the pattern of colored filters that
covers the image sensor chip’s 160 × 120 array of light
sensors (pixels). The missing red, green, and blue pixel
values must be interpolated from neighboring pixels of
like color.

Steve Freyder telecommutes from his
home in La Jolla, CA for Transcore,
working on automated toll collection
systems. He lost his real office many
years ago by never visiting it. Steve
has been programming since he first
discovered computers in high school in
1970. You can reach him at
steve@freyder.net.

David Helland works for Science Ap-
plications International Corporation
(SAIC) in San Diego, CA, most re-
cently working on portable electronics
for military training range systems.
Dave has been building hardware and
software systems for several decades.
In his spare time Dave restores vintage
fiberglass dune buggies. You can reach
him at dhelland@worldnet.att.net.

Bruce Lightner also works from home
for Lightner Engineering in La Jolla,
CA. He too discovered computers
several decades ago and has been
building hardware and software for
them ever since. In his spare time he
likes to abuse Dave’s dune buggies.
You can reach him at lightner@
lightner.net.

© Circuit Cellar, The Magazine for Computer Applications.
Reprinted with permission. For subscription information call
(860) 875-2199, email subscribe@circuitcellar.com or on our
web site at www.circuitcellar.com.

